nationalgrid

James F. Morgan

Lead Senior Environmental Engineer Environmental Department

October 18, 2013

Mr. Anthony Karwiel Remedial Bureau C, 11th Floor New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7014

Re: National Grid

Hiawatha Boulevard Former MGP Site

Syracuse, New York Site No. 734059

Finalized Construction Completion Report

Dear Mr. Karwiel:

Please find the enclosed finalized Construction Completion Report (CCR) for the in-situ soil solidification remedial action performed at the Hiawatha Boulevard former manufactured gas plant (MGP) site. The report summarizes the remedial work performed from February 2012 through October 2012 to address soil containing coal tar from former MGP operations. The CCR has been stamped and signed by a Professional Engineer (P.E.) licensed in the State of New York. An electronic copy of the CCR in portable document format (PDF) is provided on the attached compact disc.

The CCR was initially submitted to the New York State Department of Environmental Conservation (NYSDEC) and United States Environmental Protection Agency (USEPA) in "draft" format on August 14, 2013. The report was revised to address USEPA comments discussed during a September 24, 2013 telephone conference call attended by the USEPA, NYSDEC, National Grid, and ARCADIS. The revised "draft" CCR was e-mailed to the NYSDEC and USEPA on September 26, 2013. Based on USEPA's September 27, 2013 e-mail approval of the revised "draft" CCR, ARCADIS finalized the document and e-mailed a PDF copy to the NYSDEC and USEPA later that day. The NYSDEC provided approval of the final CCR in e-mail correspondence dated September 30, 2013.

Please do not hesitate to call me at (315) 428-3101 if you have any questions or require additional information.

Sincerely, F. Morgan

James F. Morgan

Lead Senior Environmental Engineer

cc: Mark Granger, USEPA (1 hard-copy and CD via U.S. Mail)

George Heitzman, P.E., NYSDEC (CD via U.S. Mail)

Amen Omorogbe, P.E., NYSDEC (CD via U.S. Mail)

Richard Jones, NYSDOH (1 hard-copy and CD via U.S. Mail)

David Snyder, P.E., OCDWEP (1 hard-copy and CD via U.S. Mail)

John Parkinson, Esq., National Grid (CD via U.S. Mail)

Brian Stearns, P.E., National Grid (CD via U.S. Mail)

John Brussel, P.E., ARCADIS (1 hard-copy and CD)

National Grid

Construction Completion Report

In-Situ Soil Solidification Remedial Action Hiawatha Boulevard Former MGP Site Syracuse, New York NYSDEC Site No. 734059

September 2013

Construction Completion Report

In-Situ Soil Solidification Remedial Action Hiawatha Boulevard Former MGP Site Syracuse, New York

Prepared for: National Grid

Prepared by: ARCADIS of New York, Inc. 6723 Towpath Road P O Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 4111

Our Ref.: B0036693

Date:

September 2013

i

Certification

I, John C. Brussel, P.E., certify that I am currently a New York State registered professional engineer and I had primary direct responsibility for the implementation of the remedial action performed at the Hiawatha Boulevard Former manufactured gas plant (MGP) site ("the site") from February 2012 through October 2012. Based on my inquiry of the persons under my direction and involved in coordinating and observing the remedial action summarized herein, I certify that these activities were implemented in substantial conformance with the following:

- The Order on Consent ("Consent Order") between Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC) (Index No. A4-0473-0000, signed by NYSDEC on November 7, 2003).
- The NYSDEC document titled "DER-10 Technical Guidance for Site Investigation and Remediation," (DER-10) issued on May 3, 2010.
- The Record of Decision (ROD) issued by the NYSDEC and United States Environmental Protection Agency (USEPA) on March 31, 2010.
- NYSDEC-approved Remedial Design (ARCADIS, September 2011) ("the RD") and the modifications described in this report.

The data submitted to the NYSDEC demonstrate that the remediation requirements set forth in the RD, modifications, and applicable statutes and regulations have been achieved in general accordance with the timeframes established in these documents.

All documents generated in support of this report have been submitted in accordance with Division of Environmental Remediation's (DER's) electronic submission protocols and have been accepted by the Department.

All data generated in support of this report have been submitted in accordance with the NYSDEC's electronic data deliverable (EDD) and have been accepted by the Department.

LICENSTIONAL WEST OF NEW CORNERS OF NEW CORNERS OF WARREN C. BRUSSEL & WARREN CO. 075208 R. W

9/27/13

John C. Brussel, P.E.

NYS PE License No. 075208

1.	Introdu	iction/E	Backgro	und	1
	1.1	Report	Organiza	ation	3
	1.2	Site De	escription		4
	1.3	Site Hi	story		4
	1.4	Site Ch	naracteriz	ation/Nature and Extent of Impacts Prior to Remediation	5
		1.4.1	Geolog	y	6
		1.4.2	Hydrog	eology	7
		1.4.3	Ground	water Usage	8
		1.4.4	Wetland	ds and Rare Species Evaluation	8
		1.4.5	Nature	and Extent of Impacts	9
			1.4.5.1	Soil	9
			1.4.5.2	Groundwater	10
	1.5	Overvi	ew of Sel	ected Remedy	10
	1.6	Remed	dial Action	n Objectives and Remedial Goals	11
2.	Summa	ary of R	Remedia	I and Construction Activities	12
	2.1	Pre-Co	onstruction	n Activities	14
	2.2	Ground	dwater/NA	APL Gauging, Removal, and Offsite Disposal	18
	2.3	Soil Ex	cavation		19
		2.3.1	Pre-ISS	S Excavation	19
		2.3.2	Post-IS	S Excavation	20
	2.4	Utility H	Handling		21
		2.4.1	High Pr	essure Gas Line and Electric Duct Bank	21
		2.4.2	Electric	Yard Lighting Utilities	21
		2.4.3	Storm S	Sewer Piping	22
		2.4.4	Natural	Gas Piping	22
		2.4.5	Potable	Water Piping	22
		2.4.6	Historic	al MGP Piping	23

6.	Operati Progra	ion and Maintenance Activities/Site-Wide Long-Term Monitoring m	43
	5.3	Groundwater Remedy	42
	5.2	Institutional Controls	40
	5.1	Engineering Controls	40
5.	Post-R	emediation Activities	40
4.	Chrono	ology of Events	39
3.	Solidifi	ed Soil Quality Assurance/Quality Control Sampling	38
	2.13	Green Remediation Components	36
	2.12	Deviations from Remedial Design	35
	2.11	Site Restoration and Demobilization	34
		2.10.3 Airborne Asbestos Air Monitoring Program	33
		2.10.2 Community Air Monitoring Program	32
		2.10.1 Exclusion Zone Air Monitoring Program	31
	2.10	Air Quality Monitoring Program	31
	2.9	Wastewater Treatment and Discharge	30
	2.8	Equipment Decontamination	30
	2.7	Backfilling and Compaction	28
		2.6.2 Handling of Piping2.6.3 Handling of Soil	27 28
		2.6.1 Handling of Concrete and Debris	27
	2.6	Soil and Debris Handling, Re-Use, and Offsite Disposal	26
		2.5.3 ISS Area #3	25
		2.5.2 ISS Area #2	25
		2.5.1 ISS Area #1	24
	2.5	In-Situ Soil Solidification	24

7.	Final Inspec	ction and Certifications	4
3.	Contact Info	ormation	4
9.	References		4
ГаІ	oles		
	Table 1	Remedial Investigation Soil Analytical Results	
	Table 2	In-Situ Waste Characterization Soil Analytical Results	
	Table 3	Groundwater Analytical Results	
	Table 4	Backfill Analytical Results	
	Table 5	NAPL Gauging Measurements	
	Table 6	ISS Mixing Cell Summary and QA/QC Test Results	
	Table 7	Summary of Non-Hazardous Waste Manifests for the Transport of Excavated Materials to Ontario County Landfill, Stanley, New York	
	Table 8	Summary of Non-Hazardous Waste Manifests for the Transport of Pipe to Seneca Meadows Landfill, Waterloo, New York	
	Table 9	Pipe Coating Asbestos Analytical Results	
	Table 10	Pipe Interior PCB Analytical Results	
	Table 11	Pipe Wrap PCB Analytical Results	
	Table 12	Treated Water Analytical Results	
Fig	jures		
	Figure 1	Site Location Map	
	Figure 2	Site Layout and Former MGP Structures	
	Figure 3	Distribution of PAHs and NAPL in Unsaturated Soil	
	Figure 4	Water Level Map for Fill/Solvay Unit – February 25, 2013	
	Figure 5	Water Level Map for Sand Unit - February 25, 2013	
	Figure 6	Pre-ISS Groundwater Analytical Results Exceeding Standards/Guidance Values (ppb)	
	Figure 7	ISS Areas and Cross Section Location Map	
	Figure 8	Cross Section A-A'	

As-Built Record Drawings

- 1 Pre-Remediation Site Conditions
- 2 Final ISS Limits and Treatment Bottom Elevations
- 3 ISS Mixing Cells and QA/QC Sampling Locations
- 4 Final ISS Surface/Orange Demarcation Layer Elevations
- 5 Re-Use Stone Sub-Base Backfill
- 6 Post-Remediation Site Conditions
- 7 Post-Remediation Surface Cover

Appendices

- A Project Correspondence
- B Representative ISS Remedial Action Photographs
- C Results of In-Place Density Tests Performed on Fill Materials

Attachments (on Attached Compact Disc)

Pre-Construction Meeting PowerPoint Presentation

Minutes from Construction Progress Meetings

Weekly Field Construction Progress Reports

Record of Decision

Feasibility Study Report

PDI and ISS Treatability Study Report

Metro STP Discharge Permit

Solidified Soil QA/QC Analytical Reports

Waste Manifests

Ontario County Landfill Acceptance Letter

Complete Community Air Monitoring Data

Laboratory Analytical Reports

Asbestos Variance Petition #12-0629

Asbestos Abatement Close-out Report

Asbestos Project Monitoring and Air Sampling Report

1. Introduction/Background

This Construction Completion Report (CCR) has been prepared on behalf of National Grid by ARCADIS to summarize the remedial activities (referred to herein as the remedial action) conducted by National Grid at the Hiawatha Boulevard former manufactured gas plant (MGP) site (the site; Figure 1) to address soil impacts from historical site operations. The impacts were generally related to by-products associated with the former MGP (primarily coal tar). The remedial action was performed by LAND Remediation, Inc. (LAND) of Averill Park, New York from February 2012 through October 2012. ARCADIS provided a full-time onsite project coordinator to observe and monitor implementation of the remedial action and LAND subcontracted an independent third party full-time onsite sampling technician to conduct air monitoring and implement health and safety (Colden Corporation). The New York State Department of Environmental Conservation (NYSDEC) provided weekly onsite observation. The existing site layout and limits of the former MGP are shown on Figure 2 (refer to the bold/dashed black line for the MGP limits).

This report was prepared in general accordance with Section 5.8(b) of the NYSDEC document titled "DER-10 Technical Guidance for Site Investigation and Remediation," (DER-10) issued on May 3, 2010. The remedial action was performed in accordance with:

- The existing Order on Consent (Index No. A4-0473-0000) between National Grid and the NYSDEC
- The Record of Decision (ROD; NYSDEC, March 2010)
- The NYSDEC-approved Remedial Design (ARCADIS, September 2011b)
- A February 24, 2012 letter from the NYSDEC to National Grid approving the reduction of in-situ soil solidification (ISS) area (Appendix A).

The remedial action performed at the site included, but was not limited to, the following activities:

- Conducting various site preparation activities, including the excavation, stockpiling (for later re-use), or offsite disposal of subsurface material to approximately 4 feet below ground surface (bgs). The excavation was performed, in part, to provide space for ISS bulking (i.e., to manage the increased soil volume resulting from mixing ISS reagents into the soil).
- Excavating historical MGP- and non-MGP-related piping. Approximately 24 tons of historical
 piping with non-friable and friable asbestos pipe wrap were transported offsite for disposal,
 and 41 tons of historical piping were transported offsite for recycling.

Construction Completion Report

Hiawatha Boulevard Former MGP Site

- Performing ISS to treat approximately 9,673 cubic yards (CY) of subsurface soil from approximately 4 to 22 or 24 feet bgs within an area impacted with coal tar dense non-aqueous phase liquid (DNAPL) and/or polycyclic aromatic hydrocarbons (PAHs) at concentrations greater than 500 parts per million (ppm) as shown on Figure 3.
- Excavating ISS bulked material to approximately 4 feet bgs and transporting the material for offsite disposal. Approximately 4,594 tons of bulked material was transported offsite for disposal.
- Collecting the following samples: (1) a water sample following removal and onsite pretreatment to evaluate handling requirements (onsite or offsite treatment/discharge); (2)
 soil/grout slurry samples to evaluate if the solidified material was meeting performance
 criteria; (3) soil samples to evaluate potential re-use of certain excavated material as backfill;
 and (4) waste characterization soil and pipe wrapping samples to evaluate offsite
 treatment/disposal of materials.
- Removing a mixture of water/non-aqueous phase liquid (NAPL) from two onsite monitoring wells. Approximately 10 gallons of water/NAPL were transported offsite for thermal treatment.
- Performing onsite pre-treatment of wastewater generated from excavation dewatering and equipment decontamination. Approximately 4,612 gallons of wastewater were pre-treated and discharged to the Metropolitan Sewage Treatment Plant (Metro STP) for final treatment.
- Screening certain excavated (non-impacted) topsoil and sub-base for re-use as backfill.
- Backfilling excavations using re-use soils from the site that met applicable soil cleanup objectives (SCOs).
- Backfilling the remainder of the excavation with clean, offsite source backfill material.
- Implementing dust and vapor control measures, based on air monitoring, to suppress dust, odors, and volatile organic vapors originating from the excavation/ISS activities and handling of soil.

As identified in the ROD, the remedial action was implemented to mitigate potential threats to human health and the environment arising from the presence of coal tar/PAHs in subsurface soil. This objective was achieved via the actions described herein, including the development and implementation of institutional controls in the form of an interim Site Management Plan (SMP) to be

prepared following approval of this report. An Environmental Easement (EE) will also be prepared following implementation of the groundwater remedy identified in the ROD (see Section 1.5 below).

1.1 Report Organization

The CCR is organized as follows:

	Section	Purpose
Section 1 –	Introduction/Background	Presents site background information relevant to the development of the CCR, a summary of remedial investigations and remedial actions conducted at the site, a summary of the NYSDEC- and USEPA-selected remedy, and the remedial action objectives.
Section 2 –	Summary of Remedial and Construction Activities	Presents a detailed description of the work activities performed as part of the ISS remedial action.
Section 3 –	Solidified Soil Quality Assurance/Quality Control Sampling	Summarizes the solidified soil quality assurance/quality control (QA/QC) sampling activities and results.
Section 4 –	Chronology of Events	Presents a detailed chronology of events related to the ISS remedial action.
Section 5 –	Post-Remediation Activities	Summarizes the post-ISS remedial action activities to be implemented including the engineering and institutional controls, and the groundwater remedy.
Section 6 –	Operation and Maintenance Activities/ Site-Wide Long-Term Monitoring Program	Summarizes the operation and maintenance/ site-wide long-term monitoring activities to be implemented following the ISS remedial action.
Section 7 –	Final Inspections and Certifications	Summarizes the final site inspection performed following completion of the ISS remedial action.
Section 8 –	Contact Information	Presents a list of personnel, regulatory agencies, and emergency services related to the project.
Section 9 –	References	Presents a list of the documents cited in the Construction Completion Report.

1.2 Site Description

The Hiawatha Boulevard former MGP site is located in an industrial/commercial area at the southeast end of Onondaga Lake, within the City of Syracuse, Onondaga County, New York (see Figure 1). The former MGP is located on the northern portion of property currently owned by Onondaga County and occupied by the Metro STP. Much of the site is currently occupied by sewage treatment structures, including clarifiers, aeration tanks, and an ammonia and phosphorous removal facility that contains the Operations Center, the Biologically Aerated Filter (BAF) Building, the High Rate Flocculated Sedimentation (HRFS) Building, the Ultraviolet (UV) Disinfection Building, and the Chemical Building (hereinafter, the "Main Building Complex"), as shown on Figure 2. The remainder of the site is primarily covered by driveways, paved parking lots, and the County Maintenance Building (CMB). The existing site layout and limits of the former MGP are shown on Figure 2 (refer to the bold/dashed black line for the MGP limits).

The site topography is generally flat, resulting from the historical fill operations that pre-dated and preceded MGP activities (e.g., Solvay waste beds) and construction activities associated with the expansion of the Metro STP in the mid-1970s. The site elevation is approximately 7 feet above the adjacent Onondaga Lake. An elevated CSX rail line is located adjacent to the western edge of the property, between the site and Onondaga Lake. Access to Metro STP property is restricted by chain-link fences that surround the perimeter of the property and entrances that are monitored via security cameras. Entrance gates are kept closed outside of normal business hours.

1.3 Site History

A chronological history of the former MGP property and surrounding area is presented in the *Remedial Investigation Report* (ARCADIS, 2003) and relevant portions are summarized below.

- In the late 1800s, the site was used by Solvay Process as a fill area for waste. The Solvay Process waste resulted from the manufacture of sodium carbonate (soda ash), sodium bicarbonate, and calcium chloride.
- The Hiawatha Boulevard former MGP was operated by several companies between 1924 and 1958. Numerous 80-foot long piles were driven to support the large MGP foundations on the accumulated fill that characterized the site. MGP-related structures were constructed and demolished onsite between 1924 and 1961 and included vertical coal gas producing units, relief holders, gas oil tanks, booster houses, and other structures.
- A portion of the former MGP property was sold in 1967 to facilitate expansion of Onondaga County's Metro STP. Construction began on the expansion in the 1970s and included new

Construction Completion Report

Hiawatha Boulevard Former MGP Site

wastewater treatment facilities (primary and secondary clarifiers, aeration tanks, etc.) in the western portion of the MGP footprint. The CMB was also constructed at that time.

Until 2000, National Grid owned a four-acre parcel on the site that was occupied by a service
center, which included a garage and offices for maintenance crews. These structures were
unrelated to the current CMB, which is on a separate, adjacent parcel. The National Grid
property was sold to Onondaga County and the structures were subsequently demolished by
the County in 2000.

Onondaga County completed construction of the Ammonia Removal/Stage II Phosphorous facility in 2005. The entire site has been substantially altered due to the county's construction project, including an interim remedial measure (IRM) completed by National Grid between September 2001 and February 2003 (hereafter "the Soil/Groundwater Removal IRM"). The former MGP site is now entirely occupied by the Metro STP. Further information about the Soil/Groundwater Removal IRM is presented in the *Feasibility Study Report* (ARCADIS, 2009) ("the FS Report").

1.4 Site Characterization/Nature and Extent of Impacts Prior to Remediation

The site was the subject of 10 environmental investigations and other studies starting in 1971 through 2011, including:

- Preliminary Subsurface Investigation for Proposed Onondaga County STP conducted by O'Brien & Gere Engineers, Inc. in 1971 and 1972.
- Niagara Mohawk Substrate Sampling and Analysis conducted by National Grid in 1985.
- USEPA Preliminary Site Assessment (PSA) conducted by the NUS Corporation in 1987.
- Sediment Sampling and Testing in the Barge Canal conducted by the USACE in 1994.
- Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) Study conducted by ARCADIS between 1995 and 1998.
- Remedial Investigation (RI) conducted by ARCADIS between 2000 and 2003.
- Supplemental Remedial Investigation (SRI) conducted by ARCADIS between 2005 and 2006.
- Pre-FS Additional Investigation conducted by ARCADIS in March 2008.

- Soil Vapor Investigation (SVI) conducted by ARCADIS in May 2008.
- Pre-Design Investigation (PDI) and ISS Bench-Scale Treatability Study conducted by ARCADIS from August 2010 through March 2011.

The comprehensive results of these investigations are presented in the FS Report and the *PDI* and *ISS Treatability Study Report* (ARCADIS 2011a). Electronic copies of the FS Report and the PDI and ISS Treatability Study Report in portable document format (PDF) are included on the attached CD.

A brief discussion of the site topography and drainage is provided below, followed by a discussion of geology, hydrogeology, groundwater usage, wetlands and rare species evaluation, and nature and extent of MGP-related impacts within the soil treatment area identified in the ROD.

Ground surface elevations in the vicinity of the remedial action range from approximately 373 to 377 feet above mean sea level (amsl). The land surface at the site is relatively flat, except along the eastern property line between the site security fence and Hiawatha Boulevard, where the grade changes abruptly ascending approximately 10 feet. Storm water is conveyed offsite via a combination of overland sheet flow and underground storm sewer piping connected to various storm water catch basins and curb drains associated with two separate storm sewer systems that are approximately divided into the northern and southern work area, as shown on Record Drawing 1 and identified below.

- The northern storm water drainage system is located in the vicinity of the CMB and includes a
 water pit, catch basin, and manhole. The storm water is conveyed to the northwest of the ISS
 limits.
- The southern storm water drainage system is located in the parking lot and driveways in the
 area east of the HRFS Building and includes a storm water catch basin, two storm water
 manholes, and three curb drains. The storm water is conveyed to the west of the ISS limits.

1.4.1 Geology

.

Subsurface investigations and remediation have identified five stratigraphic units of interest within the ISS limits. In order of increasing depth from the ground surface, these geologic units are presented in Table 1-1.

¹ Relative to the North American Vertical Datum (NAVD 88).

Table 1-1
Generalized Geologic Column

Thickness Range (feet)	Stratigraphic Unit
2-5	Fill - The surficial unit, which varies in composition and texture throughout the site and consists of poorly sorted clay, sand, silt, gravel, brick, wood, ash, cobbles, and chunks of concrete.
2-12	Solvay Process Waste (Solvay waste) - White to pink or gray in color and consists predominantly of silt and fine sand-sized material with a chalky consistency.
18-20	Solidified Material - Light to dark gray in color and consists primarily of a solidified mixture of fill, Solvay waste, native sand, bentonite, blast furnace slag cement, and Portland cement. Solidified material is the result of the soil remedial action completed from February 2012 through October 2012 and is isolated to the ISS limits (as shown on Figure 3) starting approximately 4 feet below ground surface (bgs) and extending to 22 or 24 feet bgs, depending on location.
30-50	Sand Unit - Native silty fine to coarse sand gray to brown with varying amounts of shells. The silt content increased significantly with depth.
>10	Silt/Clay Unit - In the few borings that extended through the sand unit, a silt and clay unit was encountered below the sand. The surface of this unit is generally encountered between 40 and >50 feet bgs. This unit "fines" downward in that the clay content of the unit generally increases with increased depth. However the transition to an increased clay content is variable across the site.
	Based on several geotechnical borings completed as part of the mid-1970s expansion of the Metro STP (which were generally completed to depths of 230 feet to 270 feet bgs), the depth at which clay was first observed (identified as "little clay" or "some clay") was variable, and was as shallow as 35 feet bgs at a location in the western portion of the site and as deep as 130 feet bgs at a location in the eastern portion of the site. Boring logs for those geotechnical borings and figures showing boring locations are included in the Subsurface Investigation Report on Proposed Metropolitan Syracuse Sewage Treatment Plant (Onondaga Soil Testing, Inc., 1971).

1.4.2 Hydrogeology

The major hydrologic features near the site are Onondaga Lake and the Barge Canal, which discharges into the lake. The Barge Canal receives its flow from Onondaga Creek, which drains highly developed, heavily commercialized and industrialized landscapes as it passes south to north through the City of Syracuse. Onondaga Creek, like the Barge Canal, is classified by NYSDEC as a Class C water body.

As identified during the previous investigations, saturated conditions are first encountered within the fill or Solvay waste layer. The water-level data indicate that the water table beneath the site generally occurs at a depth of approximately 5 to 10 feet bgs. Water levels recorded in the shallow "S" and deep "D" series wells and surface water elevation data from the Barge Canal were used to construct water table contour maps for the fill/Solvay Waste and sand units. The most recent water level contour maps for the fill/Solvay and sand units, for water level gauging performed on February 25, 2013, are presented on Figures 4 and 5, respectively.

As indicated by the potentiometric surface contour maps for February 25, 2013, the horizontal direction of groundwater flow is from the southeastern corner of the site to the northeast and to the northwest in both water-bearing zones. The flow directions diverge along a groundwater divide that trends northwest-southeast through the site from the area of well cluster MW-6 to the area of well cluster MW-22.

Groundwater and surface water elevation data indicate that the Barge Canal in the vicinity of the site acts as a gaining stream, meaning that groundwater flows from beneath the site into the canal. Across most of the site, the elevation of the potentiometric surface for the sand unit was generally lower than the water table, indicating a slight downward vertical component of flow across the Solvay waste layer to the underlying sand unit. In general, the groundwater levels at each well cluster were higher than the adjacent surface water elevation indicating a component of groundwater flow from the fill/Solvay waste layer and upper sand unit to the Barge Canal. Within the sand unit, an upward component of flow is indicated by the presence of an upward vertical gradient from the deeper MW-11D₂ well to the shallower MW-11D well during both the March 2003 and May 2003 monitoring events.

1.4.3 Groundwater Usage

As indicated in the FS Report, the City of Syracuse derives its potable water supply from Skaneateles Lake. The Onondaga County Department of Health and City of Syracuse reported that there are no known wells in the City used for potable water supply. The City of Syracuse Office of Development, City of Syracuse City Engineer, and the Director's Office of the Onondaga County Planning Agency were contacted regarding any "master plan" or "future plan" that has been prepared for the City of Syracuse or Onondaga County, which would have included plans for groundwater development. None of the City or County offices contacted indicated that there was such a planning document or any planned future use of groundwater.

1.4.4 Wetlands and Rare Species Evaluation

In preparation for the remedial action, an ARCADIS biologist conducted a May 3, 2011 site visit to: (1) evaluate the potential presence of protected plants that were reported by NYSDEC to have been

present in the vicinity of the site; and (2) determine if regulated wetlands were present within the ISS limits.

The ISS limits and adjacent area (i.e., the work area) were evaluated for the presence of wetland field indicators or habitat capable of supporting the listed plants. The work area consisted of ornamental trees, grassed areas, paved parking lots and driveways, and a gravel parking lot. The vegetated areas were maintained as mowed lawn. No natural vegetative communities were observed within the work area. In addition, no habitat was observed that could have supported any of the listed plants, and none of the plants were observed.

Regulated wetlands require criteria related to a dominance of hydrophytic (water-tolerant) vegetation, the presence of hydric soils, and the presence of wetland hydrology. Wetland criteria are met when field indicators specified in the *Corps of Engineers Wetlands Delineation Manual* (USACE, 1987) are observed and all three criteria are met. No field indicators of wetland hydrology or hydrophytic plant communities were observed in the work area. Therefore, it was concluded that no wetland areas are present in the work area.

1.4.5 Nature and Extent of Impacts

As indicated in the FS Report and PDI and ISS Treatability Study Report, the nature and extent of impacts associated with the site were assessed by 10 investigations. The nature and extent of impacts in soil and groundwater at the site are discussed below.

1.4.5.1 Soil

A total of 391 soil samples were collected from 6 surface soil sampling locations, 50 soil borings, 2 test pits, 16 monitoring wells, and 34 bottom/sidewall IRM verification soil sampling locations as part of the PSA/IRM, RI, and SRI. Up to 9 soil samples from each soil boring were submitted for laboratory analysis. Soil samples collected as part of the investigations were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX)/volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs)/semi-volatile organic compounds (SVOCs), metals, cyanide, pesticides, polychlorinated biphenyls (PCBs), and constituents in leachate generated by Toxicity Characteristic Leaching Procedure (TCLP) sample extraction. Soil samples were generally collected throughout the site, but primarily focused on areas that were not covered with treatment facilities (i.e., the eastern portion of the site [including the footprint of the Soil/Groundwater Removal IRM and the parking lots between the Soil/Groundwater Removal IRM and Hiawatha Boulevard], the northern portion of the site near the Barge Canal, and the western portion of the site near Onondaga Lake. The Soil/Groundwater Removal IRM resulted in removal of soils characterized by 65 subsurface soil samples from 19 locations. The RI soil analytical results with comparisons to the restricted-industrial

use SCOs are presented in Table 1. Locations with NAPL and/or PAHs greater than 500 ppm are shown on Figure 3.

Investigation within the ISS limits included collecting soil samples from 16 soil borings during the RI and 8 soil borings during the PDI. NAPL was identified at each of the soil boring locations ranging in saturation from trace/minimally (e.g., sheens, blebs) to moderately impacted (e.g., lenses). Visible NAPL was not encountered below a depth of 22 feet bgs in the soil borings. Soil sample analytical results from several locations within the ISS limits also identified PAHs (primarily naphthalene) at concentrations greater than the 500 ppm soil cleanup level identified in the ROD. NAPL and PAHs were identified in both unsaturated and saturated soil at depths generally starting near and extending below the water table.

No constituents were identified in leachate generated by TCLP sample extraction at concentrations exceeding the regulatory limits presented in 6 NYCRR Part 371. The soil characterization analytical results from the waste characterization are included in Table 2.

1.4.5.2 Groundwater

The nature and extent of MGP-related impacts to groundwater at the site were characterized by the previous investigations. Impacted groundwater is defined as groundwater containing MGP-related constituents (BTEX, PAHs, and cyanide) at concentrations exceeding the Class GA Standards and Guidance Values (i.e., drinking water standards) presented in the NYSDEC Division of Water, Technical and Operational Guidance Series document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1), dated June 1998 (last revised June 2004). The RI groundwater analytical results are presented in Table 3. RI groundwater analytical results exceeding standards/guidance values are shown on Figure 6.

While there are a number of locations where groundwater contains BTEX, PAHs (primarily naphthalene), or cyanide at concentrations exceeding groundwater quality standards/guidance values, the concentrations are generally not more than an order or two of magnitude greater than the standards/guidance values.

1.5 Overview of Selected Remedy

The NYSDEC and USEPA evaluated the FS Report and subsequently prepared a *Proposed Remedial Action Plan* (PRAP), dated February 25, 2010, to summarize the remedial alternatives, identify the preferred alternative, and present the rationale for its preferred alternative. The preferred soil remedy, as presented in the PRAP, included ISS of 13,600 CY of MGP-impacted soil, excavation offsite transportation and disposal of 3,800 CY of surface cover material (asphalt and

topsoil) and the upper several feet of fill material. The preferred groundwater remedy, which will be performed under a separate remedial action, includes measures to enhance the natural breakdown of MPG-related compounds in groundwater beneath the site (e.g., installation of a series of wells to inject oxygen and/or nutrients). Based on public input into the PRAP, NYSDEC and USEPA subsequently issued the ROD for the site in March 2010. The NYSDEC-selected remedy presented in the ROD was consistent with the proposed remedy presented in the PRAP. Additionally, the ROD required that a PDI and bench-scale studies be conducted to further evaluate suspected purifier waste and provide a basis for developing the remedial design for the remedy. The ROD also required that a pilot-scale study be conducted to provide a basis for the groundwater remedial action.

The ISS treatment area identified in the ROD was reduced following identification of a subsurface 34.5 kilovolt (kV) electric duct bank located in parallel to Hiawatha Boulevard. Information obtained during the PDI indicated that the duct bank was outside the fence, extending between two electrical manholes located mid-way between Hiawatha Boulevard and the fence. The NYSDEC approved the reduced ISS treatment area based on safety concerns and minimum setback distances required by National Grid's Electric and Gas Departments as identified in a February 24, 2012 letter from the NYSDEC (Appendix A).

1.6 Remedial Action Objectives and Remedial Goals

The overall objective of the remedial action was to remove/solidify soils containing DNAPL and/or total PAHs greater than 500 ppm to provide conditions that are protective of human health and the environment. As indicated in the RD, the specific remedial action objectives (RAOs) and remedial goals (RGs) were as follows:

Remedial Action Objectives			
RAO 1	Prevent ingestion/direct contact with impacted subsurface soil		
RAO 2	Prevent migration of MGP-related constituents that would result in groundwater or surface water impacts		
RAO 3	Prevent ingestion of groundwater containing MGP-related constituents at concentrations exceeding drinking water standards		
RAO 4	Prevent contact with impacted groundwater		
RAO 5	Prevent discharge of impacted groundwater to surface water		
Remedial (Remedial Goals		
RG 1	Contain and control, to the extent practicable, the amount of constituents of concern (COCs) in site soils that come in contact with groundwater		
RG 2	Restore groundwater quality to levels that meet state and federal drinking-water standards		

2. Summary of Remedial and Construction Activities

This section of the CCR summarizes the ISS remedial action and describes the activities performed by National Grid and its Contractors. The remedial action was conducted on behalf of National Grid by LAND between February 2012 and October 2012. During this period, ARCADIS provided full-time, onsite observation services to monitor and document the work performed. The NYSDEC also provided an onsite field representative who was present weekly during the course of remedial action. Several subcontractors for LAND (e.g., surveyors, fence installers, asbestos abatement workers, etc.) were also present at the site at various times during the remedial action.

Weekly project meetings were held onsite to ensure that the project was progressing in accordance with the approved RD and to facilitate any changes that became necessary as work proceeded. Meeting minutes from these meetings are contained in the attached CD. Weekly field construction progress reports with photographs of weekly site activities were generated to document project activities. These reports were provided to the NYSDEC, New York State Department of Health (NYSDOH), Onondaga County Department of Water Environment Protection (OCDWEP), National Grid, and LAND in e-mail correspondence on a weekly basis and are provided in the attached CD. Additional representative photographs of the ISS remedial action are included in Appendix B.

Several electronic attachments are included herein to supplement the contents of this report and provide additional information related to implementation of the remedial action. The as-built record drawings for the remedial action are presented following the text of this report. These drawings bear the stamp and signature of a Professional Engineer licensed in the State of New York and document the ISS remedial action achieved the NYSDEC-approved vertical and horizontal limits. Specifically, these drawings show:

- Surveyed excavation/ISS limits, demarcation layer locations and elevations, and geotechnical verification soil sampling locations.
- Permanent survey markers for horizontal and vertical control for site management.

Primary roles and responsibilities associated with the remedial action are summarized below.

Table 2-1
Organization Responsibilities

Organization	Role
	Lead regulatory agency
NYSDEC	Review and approval of documents
	Oversight and response actions
USEPA	Regulatory agency
USEPA	Review and approval of documents
NVSDOLL	Regulatory agency
NYSDOH	Review and approval of documents
	Responsible for overall implementation of remedial action
National Grid	Coordinate activities of Remediation Contractor
	Coordinate access to work areas
OCDWED	Site owner
OCDWEP	Responsible for Metro STP access and security
	Engineer-of-record
ARCADIS	Construction Manager (CM) on behalf of National Grid
	Prepare CCR
LAND	Remediation Contractor retained by National Grid
(and LAND's Subcontractors)	Community Air Monitoring

The remainder of this section presents a description of the primary components of the ISS remedial action, including:

- Pre-construction activities
- Groundwater/NAPL gauging, removal, and offsite disposal
- Soil excavation
- Utility handling
- In-situ soil solidification
- Solidified soil quality assurance/quality control sampling
- Soil and debris handling, re-use, and offsite disposal
- Backfilling and compaction
- Equipment decontamination
- Wastewater treatment and discharge
- Air quality monitoring program
- Site restoration, final inspection, and demobilization
- Deviations from Remedial Design

Construction Completion Report

Hiawatha Boulevard Former MGP Site

A description of each component of the remedial action is presented below.

2.1 Pre-Construction Activities

A Community Fact Sheet was prepared to announce the start of the remedial action. ARCADIS distributed the Fact Sheet in accordance with the project mailing list on February 3, 2012. A copy of the Fact Sheet is included on the attached CD.

Pre-remediation site conditions are shown on Record Drawing 1. Pre-remediation activities were performed by National Grid and its Contractors in preparation for the remedial action. These activities are summarized below.

 <u>Pre-Mobilization Submittals</u> – Prior to mobilizing to the site, LAND prepared the required submittals, including an Operations Plan, a Health & Safety Plan (HASP), and a Contingency Plan. Copies of these submittals were provided to NYSDEC on February 21, 2012 following review by National Grid and ARCADIS.

In addition to the above, LAND provided pre-mobilization submittals for their proposed clean backfill materials (Type "B" #2 Crushed Stone, Type "E" Run-of-Bank Gravel, and Type "F" Run-of-Crusher Stone) for the project. The sources of these materials were as follows:

Type "B" #2 Crushed Stone & Type "F" Run-of-Crusher Stone

W.F. Saunders & Sons, Inc. – Marcellus Plant 4993 Limeledge Road Marcellus, NY 13108

Type "E" Run-of-Bank Gravel

Syracuse Sand & Gravel, LLC – Granby Mine County Route 85 Granby, NY 13126

Prior to use, the Type "E" Run-of-Bank Gravel was sampled and analyzed for:

- Target compound list (TCL) VOCs
- TCL SVOCs
- Target analyte list (TAL) inorganic constituents
- Polychlorinated biphenyls (PCBs)
- Herbicides

- Pesticides
- Cyanide

The analytical results associated with the fill material presented in Table 4 are compared to the lower of either the restricted commercial use or the protection of groundwater SCOs presented in 6 NYCRR Part 375-6.8(b). Analytical results were less than respective SCOs/guidance values and were suitable to use as backfill. Type "B" #2 Crushed Stone and Type "F" Run-of-Crusher Stone was imported from a permitted mine/quarry and contained less than 10% of material (by weight) passing through a size 80 sieve. Therefore, sampling and laboratory analysis of these materials were not required based on provisions in Section 5.4(e)(5) of DER-10.

- <u>Pre-Construction/Safety Committee Meeting</u> A pre-construction/safety committee meeting
 was held on February 2, 2012 and attended by representatives of the NYSDEC, National Grid,
 ARCADIS, LAND, and the OCDWEP. The PowerPoint presentation and sign-in sheet from the
 pre-construction meeting are provided on the attached CD.
- Soil Re-Use and Waste Characterization LAND conducted soil waste characterization at the site within the ISS area to evaluate potential handling and disposal requirements for impacted soils. A total of 5 soil borings were completed within the remedial limits, and composite samples were collected from 1.5 to 4.5 feet bgs and 4.5 to 8.5 feet bgs and submitted for laboratory analysis of TCLP VOCs, TCLP SVOCs, TCLP metals, PCBs, ignitability, reactivity, pesticides, and pH. The soil characterization analytical results from the waste characterization presented in Table 2 are compared to the regulatory limits presented in 6 NYCRR Part 371. Analytical results indicated that the material was non-hazardous and met the requirements for disposal at Ontario County Landfill.

LAND also collected samples of stockpiled topsoil excavated from within the ISS area and new stone parking lot to evaluate potential re-use as topsoil. The samples were submitted for laboratory analysis of VOCs, SVOCs, metals, PCBs, pesticides, herbicides, and/or cyanide. The soil characterization analytical results from topsoil samples are presented in Table 4 and are compared to the lower of either the restricted commercial use or the protection of groundwater SCOs presented in 6 NYCRR Part 375-6.8(b). Analytical results were less than respective SCOs and indicated that the topsoil was suitable for re-use.

<u>Pre-Construction Survey</u> – LAND's surveying subcontractor (Thew Associates PE-LS, PLLC [Thew]) performed a pre-construction survey to document existing conditions and delineate the ISS limits and other components of the remedial action. Thew also established removal depth tracking locations on an approximately 10-foot grid across the ISS cells and recorded the pre-construction elevation at each tracking location.

Construction Completion Report

Hiawatha Boulevard Former MGP Site

- <u>Utility Clearance</u> LAND coordinated with a DigSafely New York utility locator to confirm that there were no unknown active utilities located within/adjacent to the ISS limits. LAND also coordinated with Parratt-Wolff, Inc. (Parratt-Wolff) to vacuum excavate at several locations to visually confirm the alignment of critical, permanent utilities to remain in service adjacent to the ISS limits (e.g., 20-inch diameter high-pressure gas line [HPGL], 34.5 kV electrical duct bank, 8-inch diameter ductile iron water main, etc.). All aboveground and underground utilities, equipment, and structures were identified, marked, and verified. Utilities within the ISS limits were abandoned or relocated (removed and replaced) throughout the remedial action.
- Site Controls LAND established site controls, posted project signage, and instituted access control measures prior to the start of remedial action to prevent access to the work area by unauthorized personnel or vehicles. New 6-foot high temporary chain-link fencing and gates were installed along the western and southern perimeter of the work area and connected to existing permanent fencing to secure the project work limits. Entry into the site was via the main entrance gates on Hiawatha Boulevard. "NO TRESPASSING" signs were installed on the perimeter fence. A project sign compliant with NYSDEC specifications identified in the RD was posted near the site entrance along Hiawatha Boulevard. During daily operations, admittance requirements (including worker and visitor sign-in) were in effect, as specified in the HASP for activities at the site.
- <u>Erosion and Sediment Control Measures</u> LAND installed and maintained erosion and sediment control measures (prior to initiating intrusive activities), including hay bales and silt fencing (downslope from work areas), and Siltsacks (in curb drains and catch basins).
- Mobile Office Trailers Two project trailers were mobilized, blocked, leveled, and equipped with
 office supplies. One trailer was used as an office by the ARCADIS remediation project
 coordinator and LAND. The second trailer was used by the NYSDEC onsite representative.
 Electricity, telephone and internet service, facsimile capabilities, office supplies, potable water
 and portable toilets were available for all project personnel.
- <u>Material Staging, Decontamination, and Contamination Areas</u> LAND constructed material staging, decontamination, and containment areas prior to initiating remedial action, as follows:
 - Material Staging Area The staging area consisted of lined impoundments with bermed sidewalls and a floor that sloped to a lined collection sump(s). The impoundment was lined using 40 mil high density polyethylene (HDPE) with welded seams. The impoundment area included additional precautions to protect the integrity of the liners, including a drainage/soil layer and cushion geotextiles.

Construction Completion Report

Hiawatha Boulevard Former MGP Site

A secondary material staging area was constructed west of the secondary clarifiers to stage clean topsoil excavated from with the ISS limits and new stone parking lot. The secondary staging area consisted of a geotextile base layer to clearly identify existing grade, and silt fencing around the perimeter. Additionally, the stockpiles were continuously covered with properly anchored impermeable tarpaulin cover to prevent precipitation infiltration and dust generation.

- Grout Mixing/Batch Plant Area The Grout Mixing/Batch Plant Area consisted of bermed sidewalls, a drainage/soil layer, and cushion geotextiles.
- Exclusion Zone The work area Exclusion Zone (i.e., the active work area immediate to the ISS limits) changed as ISS progressed. Orange construction fence fastened to tee posts was used to delineate the perimeter of the Exclusion Zone.
- Contamination Reduction Zone The work area Contamination Reduction Zone (i.e., the
 area immediately outside the Exclusion Zone) was used as a primary decontamination area
 for equipment and personnel. Orange construction fence fastened to tee posts were used to
 delineate the perimeter of the Contamination Reduction Zone.
- Personnel Contamination Reduction Area A personnel contamination reduction area was constructed and maintained inside the Contamination Reduction Zone and consisted of a boot washtub, a boot rinse tub, a final rinse with a hand pump sprayer, waterless hand washing supplies, and paper towels. A 55-gallon drum lined with a 6-mil thick polyethylene bag was provided for personal protection equipment (PPE) disposal.
- Support Zone The Support Zone was the area where project support was provided without contact with impacted materials. This area was located outside the Contamination Reduction Zone in the southwestern portion of the work area.
- Containment Area A frac tank was provided in a containment area bermed and lined with a HDPE synthetic membrane liner with a minimum thickness of 36 mils. The frac tank was provided to containerize liquid wastes generated by the remedial action. Water that accumulated within the containment area was collected and stored in the frac tank.
- <u>Mobilization</u> LAND mobilized equipment/materials (e.g., water treatment system components, excavation equipment, grout mixing/batch plant, etc.) necessary to perform the remedial action.
- Stone Parking Lot Construction LAND constructed an approximately 12,500 square foot (sf) stone parking lot northwest of the CMB, prior to initiating remedial action. The parking lot was

constructed to replace parking spaces within the remedial limits and generally included: (1) excavation of 3- to 12-inches of topsoil; (2) placement of geogrid and geotextile layers; and (3) placement and compaction of up to 12-inches of run-of-crusher stone. The stone parking lot was left in place for use by Metro STP personnel following completion of the ISS remedial action. Topsoil was staged onsite for analytical characterization and offsite disposal.

Following performance of the pre-construction activities summarized above, the remedial action was initiated. Those activities are described in the following sections.

2.2 Groundwater/NAPL Gauging, Removal, and Offsite Disposal

Groundwater/NAPL gauging was performed from the first day of ISS mixing (April 9, 2012) through the completion of surface restoration activities (July 25, 2012). Gauging was performed at 12 monitoring wells (MW-7S/D, MW-8S/D, MW-30S/D, MW-31S/D, MW-34D, MW-35D, and MW-36S/D) hydraulically adjacent to and downgradient of the ISS limits during ISS mixing activities. Gauging activities included measuring depth to: (1) light non-aqueous phase liquid (LNAPL) (if any); (2) groundwater; (3) DNAPL (if any); and (4) monitoring well bottom. A summary of NAPL gauging is presented in Table 5.

Gauging measurements were collected on a twice daily basis (morning and afternoon) from April 9, 2012 to May 9, 2012. Gauging measurements were generally collected on weekly basis (minimum) from May 17, 2012 (after ISS mixing was substantially completed) through July 25, 2012 (site restoration). The gauging frequency was modified from twice daily to weekly in accordance with discussions with the NYSDEC during the May 10, 2012 weekly progress meeting. Approximately 3.1 feet of LNAPL was measured in monitoring well MW-36S on April 9, 2012 through April 11, 2012. This LNAPL was present in the well prior to ISS mixing in the area (it was not "mobilized" by ISS mixing operations). Approximately 1 gallon of an LNAPL/water mixture was manually bailed from MW-36S on April 11, 2012 and did not immediately return. Small quantities (<0.01 to 0.14 feet) of LNAPL were identified in this well from May 18, 2012 through June 29, 2012. Approximately 0.25 gallons of LNAPL/water mixture were manually bailed from MW-36S on June 7, 2012. Approximately 0.05 gallons of groundwater were periodically manually bailed from MW-36S to confirm gauging measurements.

Small quantities (0.14- to 0.5-feet) of DNAPL were identified in MW-8D from May 31, 2012 through July 25, 2012. Approximately 1.5 gallons of DNAPL/water mixture were manually bailed from MW-8D on May 31, 2012. Approximately 0.3 gallons of groundwater were periodically manually bailed from MW-8D to confirm gauging measurements.

The NAPL/water mixture from the wells was containerized. The mixture was not sampled and assumed to be a hazardous waste. Approximately 10 gallons of a NAPL/water mixture were transported offsite to CleanHarbors El Dorado, LLC (El Dorado, Arkansas) for treatment as a hazardous waste (benzene).

2.3 Soil Excavation

Soil removal within the ISS limits was generally conducted from March through June 2012. Asphalt, topsoil, subsurface soil, Solvay waste, and bulked solidified soil were excavated from ground surface to approximately 4 feet bgs at each cell within the ISS limits as identified by the top of mixing cell depths in Table 6. Soil removal was performed in two phases including pre- and post-ISS excavation. The locations and horizontal/vertical limits of the excavations described below are shown on Figure 7 and a cross-section of the ISS area is presented on Figure 8. A total of 4,618 tons of material was excavated and transported offsite for disposal (refer to Tables 7 and 8 for waste shipment summaries).

Elevation contours of the post-ISS excavation bottom (i.e., bottom of the ISS monolith) are shown on Record Drawing 2. The analytical results for constituents detected in soil at soil borings/sampling locations at the site, including within the excavation/ISS area, are presented in Tables 1 and 2. Additional information regarding the pre- and post-ISS removal activities within the ISS limits is provided below.

2.3.1 Pre-ISS Excavation

Key work activities performed prior to ISS included the removal of asphalt, topsoil, stone sub-base, and Solvay waste. Excavation progressed in the following stages: (1) cutting asphalt; (2) excavating topsoil; (3) excavating approximately 6.5 inches of asphalt; (4) removing granite curbing; (5) excavating approximately 15 inches of stone sub-base; and (6) excavating soil to approximately 4 feet bgs. Asphalt cutting began on March 12, 2012, and pre-ISS excavation continued through May 21, 2012.

Asphalt was cut approximately 1 foot outside the western limits of ISS using an excavator-mounted wheel cutter. Asphalt within the ISS limits was excavated and stockpiled for offsite transportation and recycling at Barrett Paving Materials, Inc. (Barrett). Approximately 375 lineal feet of granite curbing was removed from the: (1) ISS limits; (2) vegetated islands between the HRFS parking lot and driveway; and (3) vegetated areas east of the CMB. The granite curbing was staged onsite for re-use. Several sections of curbing were damaged during removal and the curbing subcontractor (Geneva Granite Co., Inc.) indicated that furnishing and installing new granite curbing would be

more efficient, less expensive, and provide a material that was a similar color. New granite curbing was installed, and LAND removed the staged granite curbing for offsite re-use.

Approximately 6 inches of topsoil and 15 inches of stone sub-base were excavated within the ISS limits and stockpiled onsite. The soil was later re-used as topsoil within the ISS limits once it was determined that the soil met re-use criteria, as discussed in Section 2.6 of this report. Stone sub-base was later re-used as subsurface backfill within the ISS limits. A sample of the stone sub-base was not collected since less than 10% of material by weight would pass through a size 80 sieve, the threshold for the sampling exemption outlined in DER-10 Section 5.4(e)(5). No visible NAPL was observed in topsoil and stone sub-base material.

Subsurface soil and Solvay waste was excavated to approximately 4 feet bgs, direct-loaded into transport vehicles, and transported offsite to the Ontario County Landfill located in Stanley, New York (Ontario County Landfill) for disposal. No visible NAPL was observed in subsurface soil and Solvay waste material transported for offsite disposal. Prior to loading excavated material, the bed and sidewalls of each transport vehicle were lined with polyethylene sheeting. After each vehicle was loaded, a tarpaulin was secured over the top of the bed, and the trailer exterior, wheels, and undercarriage of each transport vehicle were visually inspected within the decontamination area to identify (and remove, if observed) accumulated soil prior to transporting excavated materials offsite. Before materials were transported from the site, a non-hazardous waste manifest was prepared and signed by National Grid's representative for each vehicle transporting materials offsite. A waste profile sheet accompanied each completed manifest. Waste manifests are included on the attached CD. Truck traffic to and from the site followed the designated truck route established for the project.

An approximately 225-gallon steel underground storage tank (UST) was identified in the southern portion of the ISS limits (mixing cell #4 shown on Record Drawing 3) during pre-ISS excavation activities. The tank contained a small amount of water (less than 5 gallons) and a slight sheen was observed on the water surface. The water drained through existing holes in the UST to the surrounding ground surface in an area that was subsequently solidified. The UST was removed and transported offsite for recycling at Barrett.

2.3.2 Post-ISS Excavation

Key work activities performed following ISS included removal of bulked solidified material and grading of the monolith surface. Excavation generally progressed from north to south within the ISS limits. Post-ISS excavation began on May 28, 2012 and continued through June 11, 2012.

Bulked solidified material was excavated to approximately 4 feet below proposed finish grade, as shown on Record Drawing 4, and direct-loaded into transport vehicles and transported offsite to the

Ontario County Landfill for disposal. Following excavation of bulked solidified material, the ISS surface was graded to drain water to surrounding soils. Although residual NAPL blebs had been observed on the monolith surface after ISS mixing, the blebs became bound in the solidified matrix as the monolith cured. This was apparent when scraping/grading the ISS monolith surface. No residual NAPL was observed on the final surface of the graded monolith, which was later covered with a demarcation layer, re-use stone sub-base, and imported backfill, as described in Section 2.7 below. Refer to Record Drawing 5 for the limits of re-use stone sub-base placement.

Before excavated material was loaded, the bed and sidewalls of each transport vehicle were lined with polyethylene sheeting. After each vehicle was loaded, a tarpaulin was secured over the top of the bed, and the trailer exterior, wheels, and undercarriage of each transport vehicle were visually inspected within the decontamination area to identify (and remove, if observed) any accumulated soil prior to transporting excavated materials offsite. Before any materials were transported from the site, a non-hazardous waste manifest was prepared and signed by National Grid's representative for each vehicle transporting materials offsite. A waste profile sheet accompanied each completed manifest. All truck traffic to and from the site followed the designated truck route established for the project.

2.4 Utility Handling

Several active and abandoned activities within and adjacent to the ISS limits were protected, removed, replaced, and/or relocated between the weeks of March 12, 2012 and June 25, 2012. The locations of utilities prior to construction activities are shown on Record Drawing 2.

2.4.1 High Pressure Gas Line and Electric Duct Bank

A 20-inch diameter HPGL and 34.5 kV electric duct bank were identified along the eastern ISS limits during utility clearance activities. As summarized in Section 2.12 below, the HPGL and duct bank are permanent active utilities that: (1) could not be removed or relocated; and (2) required clearance distances in which remedial activities could not be performed. High visibility construction fencing was installed to demarcate the utility clearance distances, and restricted construction crossings were installed to allow heavy equipment to cross the utilities.

2.4.2 Electric Yard Lighting Utilities

Utility service to the electric yard lighting system was de-energized and lock out/tag out (LO/TO) of the electrical circuit was completed by Metro STP and LAND personnel during the week of March 12, 2012. A total of four light poles and associated concrete pedestals and approximately 232 lineal feet (LF) of electrical cable/conduit located within or adjacent to the ISS limits were removed by the

electrical subcontractor (O'Connell Electric Company, Inc. [O'Connell]) and staged onsite for later re-use.

Following completion of ISS and backfilling activities, the light poles, concrete pedestals, and electrical cable/conduit were replaced. Utility service was restored to the yard lighting electrical circuit during the week of June 25, 2012.

2.4.3 Storm Sewer Piping

Approximately 55 LF of storm sewer piping and a curb drain located within the ISS limits were removed and temporarily capped outside the ISS limits during the week of March 19, 2012. After ISS and backfilling activities were completed, new storm sewer pipe and a curb drain were replaced during the week of June 11, 2012, as shown on Record Drawing 6. OCDWEP personnel inspected and approved installation of the storm sewer pipes and catch basin.

2.4.4 Natural Gas Piping

A 2-inch diameter natural gas pipe was identified during pre-ISS excavation in ISS mixing cell #1 (Record Drawing 1) during the week of April 9, 2012. National Grid Gas Department personnel mobilized to the site and indicated the pipe was inactive and not leaking. The natural gas pipe was cut and capped outside the ISS limits, and the decommissioned portions of the pipe were removed.

A 2-inch diameter natural gas pipe providing service to the CMB was located crossing the center of the ISS area (mixing cells #61, 62, and 63) by excavation/hand digging during the week of March 19, 2012. National Grid Gas Department personnel relocated the natural gas pipe during the week of May 14, 2012. Relocation activities included de-energizing the active natural gas pipe, installing a new 2-inch diameter polyvinyl chloride (PVC) natural gas pipe in an area where ISS was previously completed (Record Drawing 6), and restoring natural gas service to the CMB with no more than 4 hours of service interruption. The de-energized natural gas pipe was subsequently removed during the weeks of May 14, 2012 and May 21, 2012.

2.4.5 Potable Water Piping

An 8-inch diameter cast-iron potable water pipe providing service to the CMB and backup supply to the wastewater treatment plant was located crossing the center of the ISS area (mixing cells # 61, 62, and 63) during the week of April 16, 2012. The pipe was located at a depth of approximately 7 feet bgs by excavating several test pits along the pipe alignment. The potable water pipe was relocated during the week of May 14, 2012 by LAND's contractor (DWB, Inc.). The relocation was observed by OCDWEP personnel. Relocation activities included excavating a shallow trench in the

solidified monolith along the relocated pipe alignment, de-energizing the active potable water pipe, providing and placing a new 8-inch cast-iron pipe and fittings, installing concrete thrust blocks, and restoring potable water service (Record Drawing 6). The de-energized potable water pipe was subsequently removed during the weeks of May 14, 2012 and May 21, 2012.

A 6-inch diameter high density polyethylene (HDPE) water pipe was identified along the western ISS limit (mixing cells #54 and 55) during the week of April 30, 2012. The HDPE water pipe provided service to the fire hydrant north of the ISS grout plant. The western limit of ISS was relocated approximately 5 feet east to avoid damaging the water supply pipe, as summarized in Section 2.12.

2.4.6 Historical MGP Piping

Several abandoned historical MGP-related pipes were encountered within the ISS limits from April 2, 2012 through May 21, 2012. No NAPL was identified during visual inspection of the pipe interiors. Historical pipes were identified throughout the ISS area and included pipes of several diameters (6 through 20 inches) and material (steel and cast iron). Pipes were removed to the ISS limits and temporarily staged in an area where soil had previously been solidified. The bulked material the pipe was staged on was later excavated for offsite disposal as described below.

Several of the pipes were wrapped with an insulation material that potentially included asbestos-containing material (ACM). Upon initial discovery of the wrapped pipe, LAND's subcontractor (Colden Corporation) collected bulk samples of the insulation for laboratory analysis for asbestos. The laboratory analytical results indicated that the insulation was not ACM. Colden later collected additional bulk samples of pipe insulation and wipe samples of pipe interiors for disposal purposes. These additional samples were analyzed for asbestos and PCBs, respectively. The analytical results indicated that asbestos (friable or non-friable) was present in the wrapping of several pipes (Table 9). PCBs were only detected in one sample at a concentration of 1 microgram per (ug) wipe, and therefore the pipes were not a PCB hazardous waste (Table 10). PCBs were not detected in bulk insulation samples (Table 11).

LAND's subcontractor (Classic Environmental, Inc. [Classic]) performed asbestos abatement of historical MGP pipe wrap/insulation during the week of June 4, 2012, in accordance with New York State Department of Labor (NYSDOL) Industrial Code Rule 56-1 through 56-12 and Asbestos Variance Petition #12-0629 (attached CD). The asbestos abatement activities included: (1) segregating non-ACM piping, friable ACM piping, and non-friable ACM piping; (2) wrapping the ends of ACM piping with two layers of 6-mil plastic sheeting and duct tape; (3) transferring piping to containers for offsite disposal; (4) excavating approximately 6-inches of soil beneath staged pipe for offsite disposal; (5) performing air monitoring during ACM abatement; and (6) transporting the containers offsite for disposal, as described in Section 2.6 below.

2.5 In-Situ Soil Solidification

Solidification activities within the ISS limits were conducted between April 9, 2012 and May 21, 2012. The locations and horizontal/vertical limits of solidified material are described below and shown on Record Drawings 2 and 4.

ISS mixing was performed by an excavator with a modified bucket. Holes were cut in the excavator bucket to more thoroughly mix soil. The holes relieved the vacuum that would otherwise have been created by a full bucket of soil. A global positioning system (GPS) unit was mounted on the excavator and calibrated each day to collect the location and completion depths of ISS mixing cells.

ISS mixing activities progressed in the following stages at each mixing cell: (1) excavating approximately 1 to 2 feet of soil and creating a berm around the perimeter of the mixing cell with the excavated soil (to provide a basin for grout and prevent solidified material overflow); (2) continuously pumping grout (prepared at the onsite grout plan) into the mixing cell to achieve the design grout-to-soil volume proportions; and (3) mixing grout and subsurface soils to completion depths. Mixing cells were generally solidified in a checkerboard sequence to: (1) allow solidified material to cure at distinct boundaries, therefore preventing collapse of a mixed cell into an adjacent cell being mixed; and (2) provide a solid surface for the excavator to operate. ISS mixing cells were generally completed in the following sequence, as identified in Table 6: (1) the eastern portion of the ISS area; (2) the utility corridor (mixing cells #61, 62, and 63; as shown on Record Drawing 6) following utility relocation described above; and (3) the western portion of the ISS area within driveways (to minimize disruption for construction vehicles).

Grout was produced in the onsite automated batch plant, as needed, using the following mix design (weight admixture per wet weight of soil to be solidified): (1) 5% blast furnace slag (BFS) cement; (2) 1.5% Portland cement; and (3) 0.5% bentonite. QA/QC samples were collected from select mixing cells following mixing and prior to curing, as described in Section 3.

A total of 9,673 CY of soil was solidified within the ISS limits from approximately 4 feet bgs to 22 or 24 feet bgs. For purposes of the remedial action, three remedial areas were developed based on treatment depth and location as shown on Figure 7. Additional information regarding the removal activities within each ISS area is provided below.

2.5.1 ISS Area #1

ISS Area #1 is located in the southern portion of the remedial limits and consisted of mixing cells #1 through 18, 50, 51, 52, 61, 62, and 63. The target depth of 22 feet bgs was achieved at 71 of 81 survey locations (approximately 1 survey location per 65 sf, which is a greater frequency than the

Construction Completion Report

Hiawatha Boulevard Former MGP Site

minimum required 1 survey location per 100 sf presented in the RD). Soil was solidified to within 2.5 inches of the target depth at the remaining 10 survey locations. A total of 3,553 CY of soil was solidified within a 5,339 sf area to an average depth of 22.1 feet bgs.

As described above in Section 2.4, active natural gas and potable water pipes providing service to the CMB and/or Metro STP were located in mixing cells #61 through 63. Following utility relocation, mixing cells #61 through 63 were solidified to the target depth.

Various debris and historical MGP pipes were removed from ISS Area #1 including a 2-inch diameter natural gas pipe and two 20-inch diameter abandoned pipes.

Residual NAPL blebs were observed on the surface of several mixing cells after ISS mixing, and the blebs became bound in the solidified matrix as the monolith cured. The bulked ISS material was excavated to 4 feet bgs and the monolith surface was graded to drain water from the surface. NAPL was not observed on the graded monolith surface.

ISS Area #1 mixing activities were completed on May 21, 2012.

2.5.2 ISS Area #2

ISS Area #2 is located in the northern portion of the remedial limits and consisted of mixing cells #19 through 49. The target depth of 24 feet bgs was achieved or over-solidified at 87 of 93 survey locations (approximately 1 survey location per 74 sf, which exceeds the minimum required frequency presented in the RD). Soil was solidified to within approximately 1-inch of the target depth at four survey locations and 3.5 and 6 inches at the remaining two survey locations. A total of 5,077 CY of soil was solidified within a 6,844 sf area to an average depth of 24 feet bgs.

Various debris and historical MGP pipes were removed from ISS Area #2, including two 6-inch diameter abandoned pipes and an 8-inch diameter abandoned pipe.

ISS Area #2 mixing activities were completed on May 1, 2012.

2.5.3 ISS Area #3

ISS Area #3 is located in the western portion of the remedial limits and consisted of mixing cells #53 through 60. The target depth of 22 feet bgs was achieved or over-solidified at 24 of 26 survey locations (approximately 1 survey location per 60 sf, which exceeds the minimum required frequency presented in the RD). Soil was solidified to within approximately 2.5 inches of the target

depth at the remaining two survey locations. A total of 1,043 CY of soil was solidified within a 1,567 sf area to an average depth of 22 feet bgs.

As described above in Section 2.4.5, an active 6-inch diameter HDPE water pipe was identified along the western limits of ISS Area #3 during pre-ISS excavation activities. The western limit of ISS Area 3 was revised to avoid damaging the 8-inch HDPE water pipe.

ISS Area #3 mixing activities were completed on May 7, 2012.

2.6 Soil and Debris Handling, Re-Use, and Offsite Disposal

Extensive pre-ISS in-situ waste characterization soil sampling was performed as part of the PDI and pre-construction activities as previously discussed in Sections 1.4.5 and 2.1, respectively, to allow excavated soil destined for offsite disposal to be directly loaded into transport vehicles, to the extent possible. Each transport vehicle was loaded on a clean sheet of polyethylene in the truck "load out" area, thereby reducing the need for subsequent truck decontamination.

Prior to loading, the bed and sidewalls of each waste container (e.g. dump trailer, dump truck bed) were lined with polyethylene sheeting. After each vehicle was loaded, a tarpaulin was secured over the top of the bed. The trailer exterior, wheels, and undercarriage were visually inspected within the load out area to identify (and remove, if observed) accumulated soil prior to transporting excavated materials offsite. Each waste transporter had a waste transporter permit (6 NYCRR Part 364). Before any materials were transported from the site, a non-hazardous waste manifest, hazardous waste manifest, or bill-of-lading (as appropriate) was prepared and signed by National Grid's representative for each vehicle transporting materials offsite. All truck traffic to and from the site followed the designated truck route established for the project in the RD.

A total of 5,009 tons of piping, C&D debris, and soil were transported offsite for recycling or disposal, as follows:

- 350 tons of asphalt were transported to Barrett for recycling.
- 41 tons of metal piping were transported to Roth Steel Corporation (Roth) for recycling.
- 4 tons of piping with friable asbestos insulation/coating were transported to Seneca Meadows Landfill for disposal as an asbestos hazardous waste.
- 20 tons of piping with non-friable asbestos insulation/coating were transported to Seneca Meadows Landfill for disposal as non-hazardous C&D waste.

- 182 tons of C&D debris were transported to the Ontario County Landfill for disposal as a nonhazardous waste.
- 47 tons of soil with bulk friable asbestos were transported to Ontario County Landfill for disposal as a non-hazardous waste.
- 4,365 tons of soil were transported to the Ontario County Landfill for disposal as a nonhazardous waste.

Remaining (non-impacted) topsoil and stone sub-base removed from the excavation were staged, characterized, and re-used onsite as topsoil or subsurface backfill, respectively.

Waste shipment summaries, which identify manifest numbers and corresponding weights for each waste shipment to Ontario County Landfill and Seneca Meadows Landfill, are included in Tables 7 and 8, respectively. Copies of waste manifests, disposal receipts, and certificates of disposal are included on the attached CD. The subsections below describe the handling of piping, C&D debris, and soil/bulked ISS material removed from the site.

2.6.1 Handling of Concrete and Debris

Remnants of former MGP structures, including concrete and other miscellaneous debris, were encountered during the pre-ISS excavation and ISS mixing activities within the ISS limits. The material was not "suitable" for subsurface re-use for geotechnical reasons. Large material was downsized prior to offsite disposal by crushing material with the excavator treads. Materials were transported offsite for disposal as C&D debris. A waste shipment summary, which identifies weights for each waste shipment of C&D debris to Ontario County Landfill, is included in Table 7.

2.6.2 Handling of Piping

As described in Section 2.4, pipe within the ISS limits was removed and staged in the northwestern corner of the ISS limits where soil had previously been solidified. Following receipt of asbestos and PCB analytical results, pipe removed from the ISS area was segregated into three piles: (1) pipe without ACM coating; (2) pipe with non-friable asbestos coating; and (3) pipe with friable asbestos coating. Analytical results for asbestos and PCBs are presented in Tables 9, 10, and 11.

Before waste loading was performed, the bed and sidewalls of ACM pipe roll-off waste containers were lined with two layers of 6-mil polyethylene sheeting. After ACM pipe was loaded in the containers, the two layers of polyethylene sheeting were sealed using adhesive tape. The roll-off used to transport friable ACM piping also had an impermeable metal cover instead of a tarp. The

roll-off container and trailer exterior, wheels, and undercarriage were visually inspected within the load out area to identify (and remove, if observed) accumulated soil prior to transporting excavated materials offsite. The waste transporter (Classic) had a waste transporter permit (6 NYCRR Part 364). Before any materials were transported from the site, a hazardous or non-hazardous waste manifest, or bill-of-lading (as appropriate) was prepared and signed by National Grid's representative for each vehicle transporting materials offsite. All truck traffic to and from the site followed the designated truck route established for the project.

2.6.3 Handling of Soil

Materials excavated within the ISS limits, which were previously characterized as non-hazardous by the sampling and analysis performed as part of the PDI and pre-construction activities, were re-used where appropriate, or disposed of at Ontario County landfill, as indicated in the subsections below.

Re-Use Materials

Topsoil from 0 to 6 inches and asphalt stone sub-base excavated within the ISS was stockpiled on site for possible re-use. Topsoil was re-used provided that the material: (1) exhibited no visible NAPL; and (2) met the requirements presented in 6 NYCRR Part 375-6.7(d)(1)(ii)(c), consisting of the lower of the protection of groundwater standards or protection of public health standards for restricted commercial use as presented in 6 NYCRR Part 375-6.8(b). Stone sub-base was re-used provided that the material: (1) exhibited no visible NAPL; and (2) met geotechnical requirements. Stone sub-base contained less than 10% of material by weight passing through a size 80 sieve, and therefore sampling and laboratory analysis were not required per the provisions in DER-10 Section 5.4(e)(5). A total of 536 tons of material were re-used.

Remaining Soils

Materials that were observed to contain no visible NAPL were transported offsite to the Ontario County Landfill for disposal as a non-hazardous waste. This constituted all soil from 0 to 4 feet bgs not suitable for re-use as backfill (for geotechnical reasons) that was excavated as part of the remedial action. A total of 4,412 tons of material were transported for offsite disposal.

2.7 Backfilling and Compaction

This subsection summarizes backfilling, compaction, and related activities, including placement and installation of the demarcation layer and geogrid. The ISS area was backfilled using the following materials:

- Re-use stone sub-base meeting the criteria described in Section 2.6.3 was used as backfill in the northern portion of the ISS area from a depth of approximately 2 to 4 feet bgs, as shown on Record Drawing 5.
- Clean fill (bank-run gravel) from the Granby Mine in Granby, New York was used to backfill the ISS area to a depth of approximately 6 or 14.5 inches bgs for areas to be restored with grass or asphalt, respectively.
- #2 stone from the Marcellus Plant in Marcellus, New York was used to backfill portions of the ISS area from a depth of approximately 6.5 to 14.5 inches bgs for areas restored with asphalt.
- Re-use topsoil meeting the criteria described in Section 2.6.3 was used as backfill in vegetated areas within the ISS limits from a depth of approximately 0 to 6 inches bgs.
- Clean topsoil (105 CY) from the Gerber Topsoil (Gerber) in Kirkville, New York was used as supplemental backfill in vegetated areas within the ISS limits.

Laboratory reports for samples of fill materials are included in the attached CD. The fill materials were placed and compacted within the ISS limits in approximately 12-inch lifts. Backfill soil was compacted using a vibratory roller and tested using conventional methods. In-place field density testing was performed by PW Laboratories, Inc. (PW Laboratories) for every lift (1 test for each approximately 1,500 to 1,700 sf which exceeded the 1 test per 2,500 sf minimum requirement in the RD) to verify that relative compaction for each lift was greater than 95% maximum dry density as determined by Standard Proctor testing (American Society for Testing and Materials [ASTM] D698). The offsite backfill source (bank-run gravel) was tested by Atlantic Testing Laboratories (Atlantic) for grain size sieve (ASTM D422) and dry density (ASTM D698) prior to placement onsite. In addition, six grab samples (samples SBRG-1 through SBRG-6) of the imported clean fill (bank-run gravel) from the Granby Mine were submitted for laboratory analysis of TCL VOCs, and two composite samples (SBRC-1 and SBRC-2) were submitted for PCBs, pesticides, herbicides, TCL SVOCs, and TAL inorganic constituents to verify that the proposed materials met analytical requirements, which consisted of the lower of the restricted-commercial use or the protection of groundwater SCOs presented in 6 NYCRR Part 375-6.8(b). The analytical results for these samples were less than the analytical requirements established for the project and are presented in Table 4.

In connection with the backfilling and compaction activities described above, demarcation and geotechnical layers were placed across the ISS area. Three different types of materials were placed within the ISS limits, as described below.

- Orange demarcation layer (consisting of polyethylene construction fencing) was placed at the interface between solidified soil and imported clean fill /re-use stone sub-base.
- Black woven geotextile was placed above the bank-run gravel fill and below stone sub-base (#2 stone) for areas to be restored with asphalt.
- Black geogrid was placed within the ISS limits to be restored with asphalt to improve bearing capacity for existing subgrade in paved areas. The geogrid was placed directly above the geotextile. Geogrid was overlapped a minimum of 2 feet with existing geogrid and secured with zip-ties.

The orange demarcation layer was placed over solidified soils to indicate that SMP requirements will be triggered for any ground intrusive work extending below the demarcation layer. Clean fill from the Granby Mine, asphalt, and/or topsoil was placed over this demarcation layer to meet the requirements of the cover system outlined in the ROD (and to be specified in the SMP). In addition, LAND also placed a demarcation layer at the bottom of the relocated potable water utility trench excavated within the ISS limits. The SMP is further discussed in Section 5 of this report.

Elevation contours of the orange demarcation layer/ISS surface are shown on Record Drawing 4. In-place field density tests results are included in Appendix C.

2.8 Equipment Decontamination

All equipment that came in contact with impacted soil was decontaminated, and the materials generated during the decontamination activities were transported for offsite disposal with the impacted soil or containerized in the onsite frac tank, treated, and discharged to the Metro STP, as described in Section 2.9 below.

Equipment decontamination was performed via dry methods (brushing, wiping) and wet methods (water spray). The minimal liquids generated by decontamination were absorbed by the impacted soil that was transported for offsite disposal or containerized in an onsite frac tank (as discussed in Section 2.9). Equipment that came in contact with impacted soil was decontaminated prior to placement and compaction of backfill material, prior to leaving the site.

2.9 Wastewater Treatment and Discharge

A frac tank and temporary onsite wastewater treatment system were mobilized to the site prior to work activities. Approximately 4,612 gallons of groundwater was pumped from the utility trench excavated for the 8-inch potable water pipe to an onsite frac tank where it was temporarily staged

onsite. Onsite water treatment included pumping water through a 25 micrometer (um) filter and vessel containing activated carbon. Treated groundwater was sampled for VOCs, metals, PCBs, cyanide, chloride, oil and grease, and pH. Analytical results for treated groundwater are presented in Table 12. The laboratory analytical data report for the treated groundwater sample is included in the attached CD. The pre-treated wastewater was discharged to the Metro STP (via a manhole west of the excavation/ISS area) for final treatment under a permit issued by OCDWEP on May 24, 2012. Copies of the wastewater discharge permit and a May 21, 2012 letter from the NYSDEC that supported the permit issuance are included on the attached CD and in Appendix A, respectively. The associated wastewater treatment materials (e.g., activated carbon, filters) were transported to Ontario County Landfill for offsite disposal as a non-hazardous waste.

2.10 Air Quality Monitoring Program

Airborne monitoring for particulate matter less than 10 micrometers in diameter (PM₁₀) and for VOCs was conducted during the remedial action when ground intrusive work was being performed. Airborne monitoring consisted of: (1) exclusion zone air-monitoring for evaluating construction worker health and safety; and (2) community air monitoring to determine the levels of VOCs and total suspended particulates at the work area perimeter.

Air monitoring was performed by Colden in accordance with the NYSDOH Generic Community Air-Monitoring Plan (CAMP) and site-specific CAMP included in the RD. The provisions included real-time air-monitoring for VOCs and PM₁₀ at one perimeter upwind station and two perimeter downwind stations of the work area. An additional monitoring station was located at the nearest receptor, the CMB, regardless of its relationship to wind direction.

Air quality monitoring was also performed during asbestos abatement activities by LAND's contractor (Spectrum Environmental Associates, Inc.). Air monitoring included collecting airmonitoring samples for laboratory analysis of asbestos fibers. Monitoring was performed at six locations, including: (1) one ambient location; (2) two decontamination area locations; and (3) three perimeter locations.

2.10.1 Exclusion Zone Air Monitoring Program

The air quality within the exclusion zone was monitored to ensure worker health and safety in accordance with requirements specified in 29 Code of Federal Regulations (CFR) 1910.120. Based on the air monitoring results during the remedial action, all work excluding asbestos abatement was performed in Modified Level D personal protective equipment, and no upgrades to higher level protection work were required. Asbestos abatement activities were performed in Level B personal protective equipment.

Completion Report

Hiawatha Boulevard Former MGP Site

2.10.2 Community Air Monitoring Program

The CAMP was established and followed to address the following objectives:

- Monitor concentrations of VOCs and total suspended particulates to protect human health and the environment.
- Provide an early warning system so engineering controls could be enacted to prevent unnecessary exposure to emissions resulting from project activities.
- Measure and document the concentrations of VOCs and total suspended particulates for determining compliance with the established air-monitoring limits.

Air monitoring was continuously performed and readings were recorded in 15 minute increments by instrument data loggers. Manual readings were obtained on an approximately hourly basis. The air monitoring data recorded by data loggers and the air monitoring data recorded manually is included in the attached CD.

VOCs were monitored using a MiniRAE 2000 (PGM 7600) equipped with a photoionization detector (PID) that was calibrated each day to a 100 ppm isobutylene air standard. PM₁₀ monitoring was performed using a TSI Dust Trak Aerosol Monitor. The project specific action levels of 5 ppm (above background) for VOCs and 150 micrograms per cubic meter (µg/m³) (above background) for PM₁₀ were based on the average ambient readings calculated for continuous 15-minute increments.

PM₁₀ readings downwind from the work area exceeded the action level on two occasions as identified below:

- March 30, 2012 An exceedance was measured at a downwind monitoring station due to a diesel truck idling upwind of the air monitoring station.
- April 30, 2012 An exceedance was measured at a downwind monitoring station for one 15minute interval when the blast furnace slag cement silo was being refilled and a cam-lock hose connector unfastened due to vibrations in the line. The BFS cement dust released into the air quickly dissipated, and air monitoring levels returned to normal within 2 minutes.

The 15-minute average action levels were not exceeded at any remaining VOC and PM₁₀ air monitoring stations for the duration of the project. There were no exceedances of air monitoring action levels related to excavation or handling of impacted materials during the project. Dust

suppression measures were preemptively implemented throughout remedial action based on visual observations and weather conditions (e.g., temperature, air moisture, wind speed) and included:

- Applying a water spray on open excavations/ISS mixing cells, excavation/ISS equipment, dump trucks, and haul roads.
- Limiting travel speeds on haul roads.
- Covering material staging areas with polyethylene sheeting.

The community air monitoring results were discussed with the NYSDEC and NYSDOH on a weekly basis. The results were also summarized and presented in the weekly field construction progress reports (refer to the attached CD). The raw air monitoring data output by the air monitoring instruments are also included on the CD. Due to data-logging errors, the instrument data logger readings for VOCs and/or PM₁₀ at select locations from February 27, 2012 through June 13, 2012 are not available. For these events, the manually-recorded air monitoring results provide documentation of the air monitoring data (attached CD). Air monitoring for the project ended on June 28, 2012 (with NYSDEC/NYSDOH approval) after a minimum of 3 feet of clean backfill was placed within the ISS limits, decontamination activities were completed, and all impacted material was transported off site.

Odors were assessed continuously throughout remedial action. No significant odors were identified by field or CMB personnel during remedial action. A Biosolve[®] spray was available, but not required for odor suppression during the remedial action.

2.10.3 Airborne Asbestos Air Monitoring Program

Airborne asbestos within the Exclusion Zone was monitored by LAND's subcontractor (Spectrum Environmental Associates, Inc. [Spectrum]) to ensure worker health and safety in accordance with requirements specified in NYSDOL Code Rule 56. Based on the potential for airborne asbestos fibers, asbestos abatement work was performed in Level B personal protective equipment.

Samples were collected each day during asbestos abatement activities (from June 6, 2012 through June 8, 2012) from six locations around the asbestos abatement area. Laboratory analysis of asbestos fibers was performed by Spectrum by National Institute for Occupational Safety and Health (NIOSH) Method 7400. Analytical results for airborne asbestos fibers were less than the satisfactory clearance air sample criteria of 0.01 fibers per cubic centimeter, as identified in Section 4-11 of NYSDOL Code Rule 56. The results are provided in attached CD.

2.11 Site Restoration and Demobilization

Following completion of backfilling activities within the ISS limits, LAND surveyed the surface elevation and performed additional grading activities (as necessary) to achieve target elevations and provide positive drainage to curb drains, catch basins, and grass-covered areas to the north of the ISS limits. The post-remediation locations of utilities are shown on Record Drawing 6. LAND's paving contractor (James V. Spano, Inc. [Spano]) performed asphalt paving activities, including: (1) fine grading backfilled materials; (2) milling 1.5 inches of asphalt pavement from select areas adjacent to the ISS limits to provide a smooth transition to existing pavement; (3) placing and compacting 3 inches of NYSDOT Type 1 asphalt base course; (4) placing and compacting 2 inches of NYSDOT Type 3 asphalt binder course; (5) placing and compacting 1.5 inches of NYSDOT Type 6 asphalt top course; and (6) painting parking lines.

The asphalt top course of driveways and parking areas in and around the ISS work area that were paved by Spano were milled and repaved (using NYSDOT Type 7F asphalt) by LAND's contractor (Lan-Co Companies, Inc. [Lan-Co]). This re-work was performed to correct the following issues with the initial paving: (1) out-of-spec top course material (NYSDOT Type 6 asphalt, which has coarser aggregate than the Type 7F material) had inadvertently been used during the initial restoration activities; (2) patches had been made in the pavement in several areas where water was observed to pond, and the patches detracted from the overall appearance of the new pavement and presented a concern in terms of their ability to withstand the wear from repeated snow plowing; and (3) water ponded in remaining low spots, which presented concerns related to ice formation in winter and long-term durability of the pavement.

Areas previously consisting of mowed lawn before the ISS project were restored by placing approximately 6 inches of re-use topsoil within and adjacent to the ISS limits followed by hydro seeding. Stones present in the re-use topsoil were a safety concern for County mowing equipment/personnel. Therefore, approximately 105 CY of additional clean topsoil (without stones) was imported from Gerber and placed on re-use soils. This new topsoil was then hydro seeded.

Following a heavy precipitation event on September 18, 2012, CMB personnel identified standing water at the interface of topsoil and asphalt northeast of the CMB. A shallow swale was also constructed northeast of the CMB on October 25, 2012 to improve surface water drainage in the area, as shown on Record Drawing 6. The swale was hydro seeded on October 26, 2012.

All staging areas were dismantled, and the materials used to construct the staging areas were transported for offsite disposal at the conclusion of the remedial action. Upon completion of site restoration and decontamination activities, all equipment, materials, temporary site facilities, and other resources were demobilized from the site. Such activities were substantially completed by the

end of September 2012. Post-remediation conditions and topography are shown on Record Drawing 6, and the clean cover system limits are shown on Record Drawing 7.

2.12 Deviations from Remedial Design

The following is a summary of the deviations from the NYSDEC-approved Remedial Design. The deviations were approved by the NYSDEC and/or OCDWEP based on field conditions and/or changes proposed by the remedial contractor to facilitate remedy implementation:

A conference call was held on February 21, 2012 with NYSDEC, National Grid, and ARCADIS to
discuss the reduction of the ISS area. The topics discussed during the conference call include the
following: (1) the location of permanent utilities (20-inch diameter HPGL and 34.5 kV electric duct
bank) identified along the eastern ISS limits during pre-construction activities; (2) restrictions and
safety considerations associated with the permanent utilities; and (3) limits of the reduced ISS area.

The NYSDEC accepted the modification in a February 24, 2012 letter to National Grid (Appendix A) with the following requirements: (1) the excluded area (the difference between the ISS limits identified in the ROD and actual shown on Figure 7) be solidified or otherwise remediated to the satisfaction of the NYSDEC in the event that the pressurized gas main is removed or relocated for future upgrades; and (2) two additional monitoring wells be installed to monitor potential migration of NAPL and groundwater changes in the excluded area.

Soil within the excluded area was not solidified during the remedial action, and monitoring wells MW-36S and MW-36D (Figure 2) were installed in accordance with the February 24, 2012 letter. The additional monitoring wells were used to gauge groundwater/NAPL during the remedial action (see Section 2.2).

- The western limit of mixing cells #54 and 55 was relocated approximately 5 feet to the east due
 to the presence of an 8-inch HDPE water pipe providing service to an adjacent fire hydrant. The
 revised ISS limits resulted in a reduction of approximately 39 CY of material from being solidified.
 - The NYSDEC observed the water pipe during the May 3, 2012 weekly progress meeting and discussed reducing the ISS limits of mixing cells #54 and 55. A description of the revised ISS limits is presented in May 4, 2012 e-mail correspondence to the NYSDEC (Appendix A).
- Sand was substituted for run of crusher stone backfill for backfilling around the relocated natural
 gas and water pipes at the site. Sand backfill pre-characterized for the National Grid –
 Sconondoa Street (Oneida) Former MGP site remediation project was used because the
 required submittals (i.e., sieve, compaction, and analytical results) were readily available.

Analytical results for the sand backfill staged at the Sconondoa Street site were less than the soil cleanup objectives identified in the Remedial Design (i.e., the lower of the protection of groundwater standards or protection of public health standards for commercial use as presented in 6 NYCRR Part 375-6.8(b). NYSDEC agreed to use of sand backfill at the Hiawatha Boulevard site based on the supporting analytical results from the Sconondoa Street site in e-mail correspondence dated May 24, 2012 (Appendix A).

- The UST uncovered in mixing cell #4 was crushed and transported offsite for recycling. Based
 on the small size of the UST and its location (within an area to be addressed by ISS), the
 NYSDEC indicated during the April 12, 2012 weekly onsite construction meeting that further
 notifications and a separate closure report for UST closure were not required.
- Poly-wrapped ductile iron was substituted for HDPE piping for the potable water pipe providing service to the CMB at the request of OCDWEP.

2.13 Green Remediation Components

The ISS remedial action used several green remediation technologies/practices to maximize the net environmental benefit, as identified in the ROD. Green remedial components used during the remedial action included:

 In-Situ Treatment – 15,750 tons of NAPL-containing soil were solidified in-place instead of being excavated and transported approximately 58 miles to the Ontario County Landfill. An equivalent tonnage of clean fill would also have been transported 24 miles to the site. This also eliminated the need for sheetpile wall associated with deep excavation (24 feet) and associated excavation dewatering.

Re-Use/Recycling

- 536 tons of material were re-used onsite as backfill/topsoil.
- 350 tons of asphalt were excavated and transported for offsite recycling at Barrett Paving.
- 41 tons of metal piping were transported for offsite recycling at Roth Steel.
- 375 lineal feet of existing granite curbing were re-used by LAND Remediation (offsite) or provided to others for re-use.

Hiawatha Boulevard Former MGP Site

- Onsite Treatment 4,612 gallons of remedial related water were pre-treated onsite and then
 discharged to the Metro STP, instead of being transported by truck to a regional industrial
 wastewater treatment facility.
- Conservation A leak in the 8-inch diameter water supply pipe to the County's facility was
 discovered and addressed by replacing the water pipe, which eliminated a loss of potable water
 and resulted in a 15 to 20 pounds per-square-inch water pressure increase in the County's
 secondary system.

Hiawatha Boulevard Former MGP Site

3. Solidified Soil Quality Assurance/Quality Control Sampling

A total of 20 solidified soil QA/QC samples were collected from ISS mixing cells immediately following mixing activities. QA/QC samples were collected at a frequency of approximately one sample per 484 CY, which is a greater frequency than the 1 sample per 500 CY minimum requirement presented in the RD. Samples were collected from the center of mixing cells at the locations and depths identified in Table 6.

Soil/grout slurry samples were collected using a man-lift and a pole with a sampling canister that could be opened and closed (via a manually activated valve) to collect material from the desired sampling interval. The soil/grout slurry samples were collected at a variety of different depth intervals, as indicated in Table 6. Soil/grout slurry material from each sampling location was poured into four 3-inch by 6-inch cylinder molds and allowed to cure.

After 7 days of curing onsite, a cylinder was submitted to PW Laboratories for analysis of unconfined compressive strength (UCS) by ASTM Method D1633. Two additional cylinders were submitted to PW Laboratories after 28 days of curing for analysis of UCS and permeability by ASTM Method D1633 and D5084, respectively. Each of the UCS sample results was greater than the minimum 50 pounds per square inch (psi) performance requirement specified in the RD. Each of the permeability sample results were less than the maximum 1x10⁻⁶ centimeters per second (cm/sec) performance requirement specified in the RD. The solidified soil QA/QC sample locations are shown on Record Drawing 3. The solidified soil QA/QC sample results are presented in Table 6. The laboratory analytical data reports for the solidified soil QA/QC samples are included on the attached CD.

4. Chronology of Events

Key activities performed during the ISS remedial action and milestone completion dates are presented in Table 4-1 below.

Table 4-1 Chronology of Events

Activity	Milestone Completion Date
Record of Decision Issued	March 2010
Remedial Design Work Plan Submitted	July 2010
NYSDEC Approval of Remedial Design Work Plan	August 2010
Pre-Design Investigation and In-Situ Soil Solidification Bench-Scale Treatability Study Report Submitted	March 2011
NYSDEC Approval of Pre-Design Investigation and In-Situ Soil Solidification Bench-Scale Treatability Study Report	May 2011
Remedial Design Submitted and Approved	September 2011
Bidding and Contractor Procurement	December 2011
Contractor Award	January 2012
Community Fact Sheet	February 2012
Remedial Action	
Mobilization	February 2012
Pre-Construction Activities	March 2012
In-Situ Soil Solidification	
Solidified Soil Quality Assurance/Quality Control Sampling	May 2012
Soil Excavation	
Utility Handling	June 2012
Wastewater Treatment and Discharge	Julie 2012
Air Quality Monitoring	
Groundwater/NAPL Gauging, Removal, and Offsite Disposal	
Soil and Debris Handling, Re-Use, and Offsite Disposal	July 2012
Backfilling and Compaction	
Equipment Decontamination	
Site Restoration and Demobilization	September 2012
Final Inspection	June 2013

5. Post-Remediation Activities

This section summarizes the post-ISS remedial action activities to be conducted. These activities include: (1) implementation of engineering and institutional controls; (2) implementation of the groundwater remedy identified in the ROD; and (3) implementation of a site-wide long-term monitoring program.

5.1 Engineering Controls

Engineering controls to protect human health and the environment at the site include:

- Clean cover system A surface cover system was installed within the ISS limits during site
 remediation as detailed below. The cover system exceeds the minimum one-foot thick cover
 requirement presented in the ROD for clean soil or pavement. Depending on the particular area
 within the ISS limits, this cover system consists of the following: (1) at least 2 feet of clean fill
 meeting restricted-commercial use soil SCOs (for landscape areas); and (2) clean fill plus a
 paving system (asphalt) totaling at least 2 feet thick. Cover system limits are shown on Record
 Drawing 7.
- Procedures required to be implemented in the event the cover system is breached, penetrated
 or temporarily removed, and in the event any subsurface MGP-impacted residuals at the site
 are disturbed, will be included in the interim SMP to be prepared for this site by ARCADIS on
 behalf of National Grid.

5.2 Institutional Controls

Institutional controls consisting of an interim SMP will be developed to address residual impacts remaining at the site following completion of the remedial action. The interim SMP will primarily address residual MGP-impacted soils that may be excavated from the site during potential future work that involves subsurface excavation or construction below clean cover materials and demarcation layers. The interim SMP will identify known locations where MGP-impacted subsurface soil (including soil that contains constituents at concentrations exceeding the restricted-industrial use SCOs) remains at the site and requires the following:

- Keeping clean cover materials in place. Cover materials at the site consist of: (1) at least 2 feet of clean fill meeting the lower of restricted-commercial use or protection of groundwater SCOs; and (2) clean fill plus a paving system (asphalt) totaling at least 2 feet thick.
- Inspection and maintenance activities to be performed for the cover materials.

- Installation of a vapor barrier and sub-slab depressurization (SSD) system piping during construction of enclosed buildings/structures intended for human occupancy, and installation and operation of a full SSD system, if needed, based on results of indoor air monitoring during or after building construction.
- Compliance with the Excavation Work Plan (to be included in the interim SMP) during the
 performance of intrusive subsurface activities extending below the clean cover materials and
 demarcation layers.
- Characterization of soil excavated below the cover materials (and demarcation layers) and appropriate management of that soil (re-use as subsurface fill or offsite disposal as set forth in the interim SMP).
- Groundwater monitoring at a subset of wells to monitor groundwater conditions following completion of the remedial action.
- Preparation and submittal of a periodic review report (to be submitted to the NYSDEC at a frequency not exceeding five years) demonstrating that the engineering and institutional controls are being maintained and remain effective.

Pursuant to the ROD, an environmental easement will be established for the site following the completion of the groundwater remedy presented in Section 1.5. The easement will be included in the Final Engineering Report and will accomplish the following:

- Restricts future use and development of the site to restricted-industrial.
- Restricts groundwater use as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH.
- Notifies future property owners of the presence of MGP residuals in soil and groundwater at the site.
- Requires compliance with the approved interim SMP.
- Requires monitoring to assess the performance and effectiveness of the remedy.
- Requires the property owner to complete and submit to the NYSDEC a periodic certification of the institutional and engineering controls.

Hiawatha Boulevard Former MGP Site

5.3 Groundwater Remedy

As indicated in Section 1.5, the groundwater remedy identified in the ROD includes enhancing bioremediation to improve the conditions for naturally-occurring bacteria to degrade MGP-related impacts in groundwater. A bench-scale treatability study was performed from October 2010 through April 2011 to evaluate the potential effectiveness of enhancing bioremediation of MGP-related constituents by different microbial pathways and potential site conditions. The results of the bench-scale treatability study indicated that naturally occurring microbial populations within the subsurface environment have the ability to degrade COCs, as presented in the *Enhanced Groundwater Bioremediation Bench-Scale Treatability Study Report* (ARCADIS 2012). The full-scale enhanced groundwater treatment system will be implemented following completion of a pilot-scale study and remedial design.

Hiawatha Boulevard Former MGP Site

6. Operation and Maintenance Activities/Site-Wide Long-Term Monitoring Program

Following the completion of remedial construction activities at the site, a site-wide monitoring program will be implemented. Site monitoring associated with the ISS remedial action will be performed to evaluate the performance and effectiveness of the ISS actions and soil cover system to reduce or mitigate MGP-related subsurface residuals at the site. This program is anticipated to include groundwater monitoring and inspections of the cover system. Groundwater monitoring and a surface cover inspection will be performed by National Grid, or their representative, until otherwise approved by the NYSDEC. The frequency of groundwater monitoring and cover system inspection will be identified in the interim SMP. The specific requirements and performance goals of this program will be discussed in more detail in the interim SMP.

Hiawatha Boulevard Former MGP Site

7. Final Inspection and Certifications

A final inspection was performed at the site following completion of remedial activities on June 26, 2013 and was attended by personnel from USEPA, National Grid, OCDWEP, and ARCADIS. The final inspection included a site walk and discussion of the completed remedial activities. No additional follow-up/closeout action items were identified for completion. A description of the site restoration and demobilization activities is presented in Section 2.11. A certification indicating that the remedial activities were implemented in substantial conformance with the Consent Order, DER-10, the ROD, and the Remedial Design is presented following the cover page of this report.

8. Contact Information

Contact information for key project personnel is presented in Table 8-1 below.

Table 8-1
Project Team Contact List

Project Manager Principal Environmental Engineer Epartment of Water Environme		james.f.morgan@us.ngrid.com brian.stearns@us.ngrid.com
Principal Environmental Engineer Epartment of Water Environme	315.428.5731 ent Protection	
Engineer epartment of Water Environme	ent Protection	brian.stearns@us.ngrid.com
-		
Project Manager	245 425 2260	
,	x347	davesnyder@ongov.net
Deputy Commissioner	315.435.2260	mikelannon@ongov.net
rtment of Environmental Cons	servation	
Project Manager	518.402.9816	alkarwie@gw.dec.state.ny.us
Project Supervisor	518.402.9662	amomorog@gw.dec.state.ny.us
Construction Oversight	NA	esknapp@gw.dec.state.ny.us
rtment of Health		
Community Health & Safety Oversight	315.477.8148	rej05@health.state.ny.us
nmental Protection Agency		
Project Manager	212.637.3351	granger.mark@epa.gov
Project Manager	518.766.4105	wpl@land-remediation.com
Project Director	518.776.4105	kad@land-remediation.com
Project Manager/Principal Engineer	315.671.9441	john.brussel@arcadis-us.com
Assistant Project Manager	315.671.9189	matt.hysell@arcadis-us.com
	Project Manager Project Supervisor Construction Oversight Promunity Health & Safety Oversight Inmental Protection Agency Project Manager Project Director Project Manager/Principal Engineer	Deputy Commissioner 315.435.2260 Interest of Environmental Conservation Project Manager 518.402.9816 Project Supervisor 518.402.9662 Construction Oversight NA Interest of Health Community Health & Safety Oversight 315.477.8148 Project Manager 212.637.3351 Project Manager 518.766.4105 Project Director 518.776.4105 Project Manager/Principal 315.671.9441

Hiawatha Boulevard Former MGP Site

9. References

ARCADIS 2003. Remedial Investigation Report, Hiawatha Boulevard former MGP Site, Syracuse, New York, prepared for National Grid (July 31, 2003).

ARCADIS. 2009. Feasibility Study Report, Hiawatha Boulevard former MGP Site, Syracuse, New York, prepared for National Grid (May 1, 2009 and revised October 9, 2009).

ARCADIS, 2011a. Pre-Design Investigation and In-situ Soil Solidification Bench-Scale Treatability Study Summary Report, Hiawatha Boulevard former MGP Site, Syracuse, New York, prepared for National Grid, March 2011.

ARCADIS, 2011b. Remedial Design, Hiawatha Boulevard former MGP Site, Syracuse, New York, prepared for National Grid, September 2011.

New York State Department of Environmental Conservation (NYSDEC). 2003. Order on Consent Index No. A4-0473-0000, signed by NYSDEC on November 7, 2003.

NYSDEC. 2010. Record of Decision, Niagara Mohawk (NM) – Hiawatha Boulevard – Syracuse Former MGP Site, Subsite of the Onondaga Lake Site, City of Syracuse, Onondaga County, New York, Site No. 7-34-059. March 31, 2010.

Onondaga Soil Testing, Inc. 1971. Subsurface Investigation Report on Proposed Metropolitan Syracuse Sewage Treatment Plant, May 14, 1971.

USACE. 1987. Corps of Engineers Wetlands Delineation Manual. January 1987.

Appendix A

Project Correspondence

Appendix B

Representative ISS Remedial Action Photographs

Appendix C

Results of In-Place Density Tests Performed on Fill Materials

Tables

	CNIVORR																	
Location ID:	6 NYCRR PART 375	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-8	B-9	B-10	B-11	B-12	MW-1D	MW-2D	MV	/-3D
Sample Depth(Feet):	Industrial	15	15	15	15	15	15	15	15	15	15	15	15	20	18 - 20	22 - 24	12 - 14	18 - 20
Date Collected:	Use SCOs	02/06/02	01/16/02	01/16/02	01/31/02	02/06/02	12/03/01	12/03/01	01/28/02	01/28/02	11/16/01	11/16/01	11/16/01	01/04/02	02/25/98	02/24/98	02/20/98	02/20/98
Soil Removed at Sar		02/00/02	01/10/02	01/10/02	01/31/02	02/00/02	12/03/01	12/03/01	01/20/02	01/20/02	11/10/01	11/10/01	11/10/01	01/04/02	02/23/30	02/24/30	02/20/30	02/20/30
Soil Stabilized at San	nple Location :								l									
Detected PCBs	r																1	0.000
Aroclor-1242		NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.033
Aroclor-1248 Aroclor-1254		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.033 <0.033
Aroclor-1260		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.033
Total PCBs		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.067
Detected VOCs		INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	\0.007
2-Butanone	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010
Acetone	1,000	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	0.14 B
Benzene	89	<0.0070	<0.0060	<0.0070	<0.0070	0.027 J	0.90 [0.47 J]	0.0090	<0.0070	NA.	<0.0060	<0.0080	<0.0070	0.17	<0.010	<0.010 [<0.010]	<0.010	0.015 J
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	<0.010
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010
Ethylbenzene	780	<0.0070	<0.0060	< 0.0070	<0.0070	0.076 J	0.75 [0.29 J]	< 0.0070	< 0.0070	NA	<0.0060	<0.0080	<0.0070	0.13	<0.010	<0.010 [<0.010]	0.058	0.0090 J
Methylene Chloride	1,000	NA	NA	NA	NA	NA	ŇΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA ,	NA	<0.010
Naphthalene	1,000	0.52	2.5	< 0.44	0.14 J	8.3	21 J [40 JE]	0.12 J	NA	0.16 J	0.093 J	0.63	2.1	31	0.10 J	<0.33 [<0.33]	2.6	0.085 J
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010
Toluene	1,000	0.0040 J	<0.0060	<0.0070	<0.0070	0.053 J	3.7 [12 J]	0.0050 J	<0.0070	NA	<0.0060	<0.0080	<0.0070	0.53	<0.010	<0.010 [<0.010]	0.012 J	0.026
Xylenes (total)	1,000	0.018 J	<0.0060	<0.0070	<0.0070	0.25 J	7.6 [3.8 J]	0.011	<0.0070	NA	<0.0060	<0.0080	0.0060 J	2.3	<0.010	<0.010 [<0.010]	0.64	0.13
Total BTEX		0.022 J	<0.0060	<0.0070	<0.0070	0.40 J	13 [16 J]	0.025 J	<0.0070	NA	<0.0060	<0.0080	0.0060 J	3.1	<0.010	<0.010 [<0.010]	0.71 J	0.18 J
Total VOCs Detected SVOCs		0.022 J	<0.0060	<0.0070	<0.0070	0.40 J	13 [16 J]	0.025 J	<0.0070	NA	<0.0060	<0.0080	0.0060 J	3.1	<0.010	<0.010 [<0.010]	0.71 J	0.32 J
		NIA.	NIA.	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	N/A	NIA	NIA.	NIA.	NIA	NIA I	0.00
2,4-Dimethylphenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.33
2-Chloronaphthalene 2-Methylnaphthalene		0.23 J	<0.43 J	NA <0.44	<0.46	2.4	8.0 J [17 J]	<0.50	0.074 J	NA NA	0.19 J	0.53	1.8	11	0.058 J	<0.33 [<0.33]	0.11 J	<0.33
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	<0.33
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	<0.33
4-Methylphenol	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.33
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.80
Acenaphthene	1,000	0.077 J	0.23 J	< 0.44	< 0.46	0.18 J	1.5 J [3.3 J]	< 0.50	< 0.45	NA	0.034 J	0.077 J	0.21 J	1.8 J	0.22 J	<0.33 [<0.33]	< 0.33	< 0.33
Acenaphthylene	1,000	0.13 J	1.1	< 0.44	< 0.46	0.86	6.8 J [13 J]	NA	0.050 J	NA	0.063 J	0.20 J	1.8	13	0.046 J	<0.33 [<0.33]	< 0.33	< 0.33
Anthracene	1,000	0.085 J	1.9	< 0.44	< 0.46	< 0.54	9.5 J [20 J]	< 0.50	0.083 J	NA	0.28 J	0.74	1.2	9.5	1.8	<0.33 [0.015 J]	0.017 J	< 0.33
Benzo(a)anthracene	11	0.052 J	1.2	<0.44	< 0.46	< 0.54	6.3 J [14 J]	< 0.50	0.13 J	NA	0.078 J	0.41 J	< 0.47	3.4 J	2.0	<0.33 [0.020 J]	0.067 J	< 0.33
Benzo(a)pyrene	1.1	<0.48	0.97 J	<0.44	< 0.46	< 0.54	4.8 J [9.8 J]	< 0.50	NA	0.12 J	0.077 J	0.35 J	< 0.47	2.4 J	1.4	<0.33 [<0.33]	0.064 J	< 0.33
Benzo(b)fluoranthene	11	<0.48	0.74	<0.44	<0.46	<0.54	4.4 J [13 J]	<0.50	NA	0.11 J	0.056 J	0.30 J	<0.47	1.7 J	1.0 J	<0.33 [<0.33]	0.052 J	<0.33
Benzo(g,h,i)perylene	1,000	0.023 J	0.39 J	<0.44	<0.46	0.54 J	1.5 J [3.7 J]	<0.50	NA	0.077 J	<0.41	0.18 J	<0.47	0.91 J	0.70 J	<0.33 [<0.33]	0.029 J	<0.33
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	110	<0.48 NA	0.82 NA	<0.44 NA	0.46 J NA	<0.54 NA	3.8 J [7.0 J] NA	<0.50 NA	NA NA	0.15 J NA	0.076 J NA	0.34 J NA	<0.47 NA	2.5 J NA	1.2 NA	<0.33 [<0.33] NA	0.071 J NA	<0.33 0.21 JB
Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.33
Carbazole		NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.33
Chrysene	110	0.046 J	1.1	<0.44	<0.46	<0.54	5.1 J [10 J]	<0.50	NA NA	0.16 J	0.087 J	0.44 J	<0.47	3.0 J	1.9	<0.33 [0.021 J]	0.074 J	<0.33
Dibenzo(a,h)anthracene	1.1	<0.48	0.12 J	<0.44	<0.46	<0.54	<1.8 [1.5 J]	<0.50	NA	<0.45	<0.41	<0.51	<0.47	<4.6	U	<0.33 [<0.33]	<0.33	<0.33
Dibenzofuran	1,000	0.16 J	0.66	<0.44	<0.46	0.45 J	5.4 J [12 J]	<0.50	NA	<0.45	0.23 J	0.36	1.3	5.8	NA	NA	NA	<0.33
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.33
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.33
Fluoranthene	1,000	0.092 J	2.6	<0.44	<0.46	<0.54	13 J [27 J]	<0.50	NA	0.18 J	0.14 J	1.4	0.10 J	10	3.5	<0.33 [0.042 J]	0.11 J	0.020 J
Fluorene	1,000	0.18 J	1.2	<0.44	< 0.46	0.62	7.8 J [17 J]	<0.50	NA	<0.45	0.16 J	0.44 J	1.4	9.5	0.37 J	<0.33 [<0.33]	< 0.33	< 0.33
Indeno(1,2,3-cd)pyrene	11	<0.48	0.45	<0.44	0.46 J	<0.54	2.1 J [4.8 J]	<0.50	NA	0.071 J	0.057 J	0.23 J	<0.47	1.2 J	0.84 J	<0.33 [<0.33]	0.036 J	<0.33
Naphthalene	1,000	0.52	2.5	<0.44	0.14 J	8.3	21 J [40 JE]	0.12 J	NA	0.16 J	0.093 J	0.63	2.1	31	0.10 J	<0.33 [<0.33]	2.6	0.085 J
Phenal	1,000	0.16 J	3.4	<0.44	<0.46	<0.54	150 J [34 J]	<0.50	NA NA	0.17 J	0.67 J	1.4	2.4	19	3.4	<0.33 [0.041 J]	0.067 J	<0.33
Phenol	1,000	NA 0.072 I	NA 2.1	NA -0.44	NA 0.46 J	NA -0.54	NA O O I (10 I)	NA <0.50	NA NA	NA 0.17 I	NA 0.099 J	NA 0.79	NA <0.47	NA 6.5	NA 2.4	NA -0.22 IO.022 II	NA 0.094 J	0.13 J 0.020 J
Pyrene Total PAHs	1,000	0.073 J 1.7 J	2.1 21 J	<0.44 <0.44	0.46 J 1.5 J	<0.54 13 J	8.8 J [19 J] 250 J [250 J]	<0.50 0.12 J	NA NA	0.17 J 1.7 J	0.099 J 2.2 J	0.78 8.5 J	<0.47	6.5 130 J	3.4 22 J	<0.33 [0.033 J] <0.33 [0.17 J]	0.094 J 3.4 J	0.020 J 0.13 J
Total SVOCs		1.7 J 1.8 J	21 J 22 J	<0.44	1.5 J	13 J	260 J [250 J]	0.12 J	NA NA	1.7 J	2.2 J 2.4 J	8.5 J 8.8 J	11 J 12 J	130 J	22 J	<0.33 [0.17 J]	3.4 J	0.13 J 0.47 J
10141 0 7 0 0 3		1.00	223	\U. 11	1.00	100	2000 [2100]	0.12 3	INA	1.7 3	2.70	0.0 0	12.0	1000	22.0	₹0.00 [0.17 0]	J. 4 J	0.47 3

Location ID:	6 NYCRR PART 375	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-8	B-9	B-10	B-11	B-12	MW-1D	MW-2D		V-3D
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	15 02/06/02	15 01/16/02	15 01/16/02	15 01/31/02	15 02/06/02	15 12/03/01	15 12/03/01	15 01/28/02	15 01/28/02	15 11/16/01	15 11/16/01	15 11/16/01	20 01/04/02	18 - 20 02/25/98	22 - 24 02/24/98	12 - 14 02/20/98	18 - 20 02/20/98
Soil Removed at Sar	nple Location:																	
Soil Stabilized at Sam	•																	·
Detected Pesticides	ipic Location .							1		l .			l .	1				
4.4'-DDD	180	NA	NA	NA	< 0.0033													
4.4'-DDE	120	NA	NA	NA	< 0.0033													
4,4'-DDT	94	NA	NA	NA	< 0.0033													
Aldrin	1.4	NA	NA	NA	< 0.0017													
Alpha-Chlordane	47	NA	NA	NA	< 0.0017													
Beta-BHC	14	NA	NA	NA	< 0.0017													
Delta-BHC	1,000	NA	NA	NA	< 0.0017													
Dieldrin	2.8	NA	NA	NA	< 0.0033													
Endosulfan II	920	NA	NA	NA	< 0.0033													
Endosulfan Sulfate	920	NA	NA	NA	< 0.0033													
Endrin	410	NA	NA	NA	< 0.0033													
Endrin Ketone		NA	NA	NA	<0.0033													
Gamma-Chlordane		NA	NA	NA	< 0.0017													
Heptachlor	29	NA	NA	NA	< 0.0017													
Methoxychlor		NA	NA	NA	0.0062 JP													
Detected Inorganics																		
Aluminum		NA	NA	NA	1,290													
Antimony		NA	NA	NA	1.10 B													
Arsenic	16	NA	NA	NA	< 0.640													
Barium	10,000	NA	NA	NA	76.7													
Beryllium	2,700	NA	NA	NA	< 0.320													
Cadmium	60	NA	NA	NA	< 0.320													
Calcium		NA	NA	NA	177,000 E													
Chromium		NA	NA	NA	2.40 B													
Cobalt		NA	NA	NA	1.50 B													
Copper	10,000	NA	NA	NA	5.00 B													
Cyanide	10,000	NA	<0.780	<0.880 [<0.860]	4.08	<0.800												
Iron		NA	NA	NA	4,730 E													
Lead	3,900	NA	NA NA	NA	3.10													
Magnesium	10.000	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	4,780 E 207							
Manganese		NA	NA NA	NA				NA NA	NA		NA NA							
Mercury Nickel	5.7 10.000	NA NA	NA NA	NA NA	<0.150 5.00 B													
	10,000	NA NA	NA NA	NA NA	5.00 B 446 BE													
Potassium	6.800	NA NA	NA NA	NA NA	0.740 BN													
Selenium Silver	6,800	NA NA	NA NA	NA NA	<0.320													
Sodium		NA NA	NA NA	NA NA	2.170 E													
Thallium		NA NA	NA NA	NA NA	<0.640													
Vanadium		NA NA	NA NA	NA NA	2.10 B													
Zinc	10,000	NA NA	NA NA	NA NA	30.7													
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	13/7	INA	13/5	INA	INA	13/5	14/5	INA	INA	INA	30.7
Diesel Range Organics [C10-C28]		NA	NA	NA	NA													
Gasoline Range Organics [Cf-C26]		NA NA	NA NA	NA NA	NA NA													
Ignitability		NA NA	NA NA	NA NA	NA NA													
nH		NA NA	NA NA	NA NA	NA NA													
Total Sulfur		NA NA	NA NA	NA NA	NA NA													
i otal Guildi		INA	INA	INA	INA	IVA	INA	INA	IVA	INA	IVA	INA	INA	INA	INA	INA	INA	INA

	6 NYCRR				104/55		*****						100 (OD	
Location ID:	PART 375	MW		44.40	MW-5D		MW-6S		MW-7D		18-WM		MW-18D	MW-19S
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	21 - 23 02/23/98	27 - 29 02/23/98	14 - 16 02/18/98	18 - 20 02/18/98	26 - 28 02/18/98	10 - 12 07/20/95	8 - 10 07/18/95	20 - 22 07/18/95	26 - 28 07/18/95	20 - 22 02/17/98	22 - 24 02/17/98	10 - 14 12/20/02	5 - 6 01/07/03
Soil Removed at Sar	nple Location:													
Soil Stabilized at Sam	nle Location :													
Detected PCBs	ipic Location .		1		l							1	l	l
Aroclor-1242		< 0.033	NA	NA	< 0.033	NA	< 0.033	NA	< 0.033	NA	<0.033 [<0.033]	NA NA	<0.028	< 0.031
Aroclor-1248		<0.033	NA	NA.	<0.033	NA NA	<0.033	NA NA	< 0.033	NA NA	<0.033 [<0.033]	NA NA	<0.028	<0.031
Aroclor-1254		< 0.033	NA	NA	<0.033	NA	<0.033	NA	< 0.033	NA	<0.033 [<0.033]	NA	<0.028	<0.031
Aroclor-1260		< 0.033	NA	NA	< 0.033	NA	< 0.033	NA	< 0.033	NA	<0.033 [<0.033]	NA	<0.028	< 0.031
Total PCBs		< 0.067	NA	NA	< 0.067	NA	< 0.067	NA	< 0.067	NA	<0.067 [<0.067]	NA	< 0.054	< 0.059
Detected VOCs												•		
2-Butanone	1,000	< 0.010	NA	NA	< 0.010	NA	<0.010 [<0.010]	NA	<1.2	NA	<1.2 [<1.2]	NA	0.015 J	<0.018 J
Acetone	1,000	0.016 J	NA	NA	0.032 B	NA	0.012 JB [0.028 B]	NA	<1.2	NA	<1.2 [<1.2]	NA	0.061	0.046 J
Benzene	89	0.18	0.0090 J	< 0.010	0.020	< 0.010	<0.010 [<0.010]	<1.2	<1.2	<1.2	<1.2 [<1.2]	<1.2 [<1.2]	0.0040 J	< 0.0090
Carbon Disulfide		< 0.010	NA	NA	0.0040 J	NA	<0.010 [<0.010]	NA	<1.2	NA	<1.2 [<1.2]	NA	0.0030 J	0.0060 J
Chlorobenzene	1,000	<0.010	NA	NA	<0.010	NA	<0.010 [<0.010]	NA	<1.2	NA	<1.2 [<1.2]	NA	0.0030 J	<0.0090
Chloroform	700	<0.010	NA	NA	<0.010	NA	0.0030 J [0.0020 J]	NA	<1.2	NA	<1.2 [<1.2]	NA	<0.0080	<0.0090
Ethylbenzene	780	0.010 J	<0.010	0.011 J	0.069	<0.010	<0.010 [<0.010]	<1.2	1.4 J	<1.2	0.84 J [1.1 J]	0.76 J [0.69 J]	0.0040 J	0.0080 J
Methylene Chloride	1,000	<0.010	NA	NA 0.00 ID	<0.010	NA	<0.010 [0.0020 JB]	NA	<1.2	NA	<1.2 [<1.2]	NA 11 D (07 D)	0.010	<0.0090
Naphthalene	1,000	1.7	< 0.33	0.22 JB	0.58 B	0.019 JB	0.087 J [0.069 J]	<0.33	120	<0.33	260 B [1,600 B]	14 B [27 B]	0.64 J	0.46 J
Styrene		<0.010	NA NA	NA NA	<0.010 <0.010	NA NA	<0.010 [<0.010]	NA NA	<1.2 <1.2	NA NA	2.9 [4.0]	NA NA	0.0010 J <0.0080	0.0050 J
Tetrachloroethene	300 1,000	<0.010 0.023	<0.010	0.0020 J	0.010	<0.010	<0.010 [<0.010] 0.00060 J [0.0040 J]	NA <1.2	1.1 J	0.52 J	<1.2 [<1.2] 1.7 J [1.5 J]	4.3 [4.5]	0.0090	<0.0090 0.0090 J
Toluene Xylenes (total)	1,000	0.023	<0.010	0.0020 J	0.051	<0.010	<0.010 [<0.010]	4.4	32	2.6	1.7 3 [1.5 3]	13 [12]	0.0090	0.0090 3
Total BTEX		0.092 0.31 J	0.0090 J	0.012 J	0.48	<0.010	0.00060 J [0.0040 J]	4.4	35 J	3.1 J	18 J [24 J]	18 J [17 J]	0.020 0.043 J	0.032 0.049 J
Total VOCs		0.31 J	0.0090 J	0.025 J	0.66 J	<0.010	0.016 J [0.036 J]	4.4	35 J	3.1 J	20 J [28 J]	18 J [17 J]	0.14 J	0.11 J
Detected SVOCs		0.02 0	0.0000 0	0.020 0	0.000	40.010	0.010 0 [0.000 0]	7.7	00 0	0.10	200 [200]	100[170]	0.140	0.110
2,4-Dimethylphenol		< 0.33	NA	NA	< 0.33	NA	<0.33 [<0.33]	NA	< 0.33	NA	<0.33 [<0.33]	NA	<0.54 J	< 0.59
2-Chloronaphthalene		< 0.33	NA	NA.	< 0.33	NA NA	<0.33 [<0.33]	NA NA	<0.33	NA NA	<0.33 [<0.33]	NA NA	<0.54 J	< 0.59
2-Methylnaphthalene		0.047 J	< 0.33	0.11 J	< 0.33	<0.33	0.033 J [0.026 J]	<0.33	18 J	<0.33	24 J [180 J]	1.0 J [1.0 J]	0.083 J	0.12 J
2-Methylphenol	1,000	< 0.33	NA	NA	< 0.33	NA	<0.33 [<0.33]	NA	< 0.33	NA	<0.33 [<0.33]	NA	<0.54 J	< 0.59
3,3'-Dichlorobenzidine		< 0.33	NA	NA	< 0.33	NA	<0.33 [<0.33]	NA	< 0.33	NA	<0.33 [<0.33]	NA	<1.1 J	1.2
4-Methylphenol	1,000	< 0.33	NA	NA	< 0.33	NA	<0.33 [<0.33]	NA	< 0.33	NA	<0.33 [<0.33]	NA	0.038 J	< 0.59
4-Nitroaniline		<0.80	NA	NA	<0.80	NA	<0.80 [<0.80]	NA	<0.80	NA	<0.80 [<0.80]	NA	<1.1 J	1.2
Acenaphthene	1,000	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	0.019 J [0.029 J]	< 0.33	1.0 J	< 0.33	<0.33 [<0.33]	<0.33 [<0.33]	<0.54 J	<0.59
Acenaphthylene	1,000	< 0.33	< 0.33	0.046 J	< 0.33	< 0.33	0.061 J [0.089 J]	< 0.33	8.9 J	< 0.33	15 J [90 J]	0.56 J [0.48 J]	<0.54 J	0.023 J
Anthracene	1,000	<0.33	< 0.33	<0.33	<0.33	<0.33	0.10 J [0.31 J]	<0.33	4.0 J	<0.33	5.0 J [27 J]	0.22 J [0.22 J]	<0.54 J	<0.59
Benzo(a)anthracene	11	<0.33	<0.33	<0.33	<0.33	<0.33	0.41 J [1.0]	<0.33	1.8 J	<0.33	3.6 J [25 J]	0.21 J [<0.33]	<0.54 J	<0.59
Benzo(a)pyrene	1.1 11	<0.33	<0.33	<0.33	<0.33 <0.33	<0.33 <0.33	0.42 J [0.73] 0.35 J [0.63]	<0.33	1.3 J 1.0 J	<0.33 <0.33	2.9 J [<0.33] 2.6 J [<0.33]	<0.33 [<0.33] <0.33 [<0.33]	<0.54 J <0.54 J	<0.59 <0.59
Benzo(b)fluoranthene Benzo(g,h,i)perylene	1,000	<0.33	<0.33	<0.33	<0.33	<0.33	0.087 J [0.03]	<0.33	<0.33	<0.33	<0.33 [<0.33]	<0.33 [<0.33]	<0.54 J	<0.59
Benzo(k)fluoranthene	110	<0.33	<0.33	<0.33	<0.33	<0.33	0.34 J [0.64]	<0.33	1.2 J	<0.33	2.8 J [<0.33]	<0.33 [<0.33]	<0.54 J	<0.59
bis(2-Ethylhexyl)phthalate		0.074 J	NA	NA	0.076 JB	NA	0.081 JB [0.12 JB]	NA	<0.33	NA	<0.33 [<0.33]	NA	<0.54 J	0.14 J
Butylbenzylphthalate		<0.33	NA	NA	<0.33	NA	<0.33 [<0.33]	NA	<0.33	NA	<0.33 [<0.33]	NA	<0.54 J	<0.59
Carbazole		< 0.33	NA	NA	< 0.33	NA	0.025 J [0.033 J]	NA	4.5 J	NA	2.8 J [<0.33]	NA	0.038 J	0.051 J
Chrysene	110	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	0.43 J [0.97]	< 0.33	1.6 J	< 0.33	3.0 J [20 J]	0.18 J [<0.33]	<0.54 J	< 0.59
Dibenzo(a,h)anthracene	1.1	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	0.098 J [0.13 J]	< 0.33	< 0.33	< 0.33	<0.33 [<0.33]	<0.33 [<0.33]	<0.54 J	< 0.59
Dibenzofuran	1,000	< 0.33	NA	NA	< 0.33	NA	0.013 J [0.019 J]	NA	5.8 J	NA	8.4 J [45 J]	NA	0.043 J	0.089 J
Diethylphthalate		< 0.33	NA	NA	< 0.33	NA	0.014 J [0.010 J]	NA	8.0 JB	NA	<0.33 [<0.33]	NA	<0.54 J	< 0.59
Di-n-Butylphthalate		< 0.33	NA	NA	< 0.33	NA	0.043 JB [0.037 JB]	NA	< 0.33	NA	<0.33 [<0.33]	NA	<0.54 J	< 0.59
Fluoranthene	1,000	0.020 J	< 0.33	0.030 J	< 0.33	< 0.33	0.71 [1.8]	< 0.33	5.9 J	< 0.33	11 J [67 J]	0.57 J [0.52 J]	<0.54 J	<0.59
Fluorene	1,000	< 0.33	< 0.33	0.023 J	< 0.33	< 0.33	0.022 J [0.049 J]	< 0.33	5.8 J	< 0.33	8.9 J [62 J]	0.40 J [0.35 J]	0.038 J	0.10 J
Indeno(1,2,3-cd)pyrene	11	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	0.25 J [0.30 J]	< 0.33	0.78 J	< 0.33	<0.33 [<0.33]	<0.33 [<0.33]	<0.54 J	<0.59
Naphthalene	1,000	1.7	< 0.33	0.22 JB	0.58 B	0.019 JB	0.087 J [0.069 J]	<0.33	120	<0.33	260 B [1,600 B]	14 B [27 B]	0.64 J	0.46 J
Phenanthrene	1,000	0.020 J	< 0.33	0.027 J	<0.33	<0.33	0.27 J [0.85]	<0.33	12 J	<0.33	20 J [100 J]	0.88 J [0.85 J]	<0.54 J	0.043 J
Phenol	1,000	<0.33	NA <0.33	NA 0.027 I	<0.33	NA -0.22	<0.33 [<0.33]	NA <0.33	<0.33	NA -0.22	<0.33 [<0.33]	NA 0.44 Lf0.30 II	0.36 J <0.54 J	<0.59
Pyrene Total PAHs	1,000	0.019 J 1.8 J	<0.33	0.027 J 0.48 J	<0.33 0.58	<0.33 0.019 J	0.67 [1.5] 4.4 J [9.2 J]	<0.33	3.8 J 190 J	<0.33 <0.33	7.2 J [43 J] 370 J [2,200 J]	0.44 J [0.39 J] 19 J [31 J]	<0.54 J 0.76 J	<0.59 0.75 J
Total SVOCs		1.8 J	<0.33	0.48 J	0.58 0.66 J	0.019 J	4.4 J [9.2 J] 4.5 J [9.4 J]	<0.33	210 J	<0.33	380 J [2,200 J]	19 J [31 J]	1.2 J	3.4 J
10(a) 07005		1.50	<0.33	U.40 J	0.00 J	U.U18 J	4.00 [8.40]	<0.33	210 J	<0.33	300 J [2,300 J]	197[313]	1.2 J	3.4 J

Location ID:	6 NYCRR PART 375	MW	/-4D		MW-5D		MW-6S		MW-7D		MW-8D		MW-18D	MW-19S
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	21 - 23 02/23/98	27 - 29 02/23/98	14 - 16 02/18/98	18 - 20 02/18/98	26 - 28 02/18/98	10 - 12 07/20/95	8 - 10 07/18/95	20 - 22 07/18/95	26 - 28 07/18/95	20 - 22 02/17/98	22 - 24 02/17/98	10 - 14 12/20/02	5 - 6 01/07/03
Soil Removed at San	nple Location:													
Soil Stabilized at Sam	•													
Detected Pesticides	ipie Location .				l .			l .					l .	
4.4'-DDD	180	< 0.0033	NA	NA	<0.0033	NA	<0.0033	NA	< 0.0033	NA	<0.0033 [<0.0033]	NA	<0.0054 J	<0.0059 J
4,4'-DDE	120	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033 [<0.0033]	NA NA	<0.0054 J	<0.0059 J
4,4'-DDT	94	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033 [0.00032 JPB]	NA NA	<0.0054 J	<0.0059 J
Aldrin	1.4	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0035 [0.00032 31 B] <0.0017 [<0.0017]	NA NA	<0.0034 J	<0.0036 J
Alpha-Chlordane	47	<0.0017	NA NA	NA NA	<0.0017	NA NA	0.011	NA NA	<0.0017	NA NA	<0.0017 [<0.0017]	NA NA	<0.0033 J	<0.0030 J
Beta-BHC	14	<0.0017	NA NA	NA NA	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA NA	<0.0017 [<0.0017]	NA NA	<0.0028 J	<0.0031 J
Delta-BHC	1,000	<0.0017	NA NA	NA NA	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA NA	0.00053 JP [<0.0017]	NA NA	0.00080 J	<0.0031 J
Dieldrin	2.8	<0.0017	NA NA	NA NA	<0.0017	NA NA	<0.0033	NA NA	<0.0017	NA NA	<0.0033 [<0.0033]	NA NA	<0.0054 J	<0.0051 J
Endosulfan II	920	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	0.0050 JP	NA NA	0.00098 JP [0.0018 JP]	NA NA	<0.0054 J	<0.0059 J
Endosulfan Sulfate	920	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033 [<0.0033]	NA NA	<0.0054 J	<0.0059 J
Endrin	410	<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033 [<0.0033]	NA NA	<0.0034 J	<0.0039 J
Endrin Ketone		<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033 [<0.0033]	NA NA	<0.0054 J	<0.0050 J
Gamma-Chlordane		<0.0033	NA NA	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	0.00049 JPB [0.0020 JP]	NA NA	<0.0034 J	<0.0039 J
Heptachlor	29	<0.0017	NA NA	NA NA	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA NA	<0.0017 [0.00094 JP]	NA NA	<0.0028 J	<0.0031 J
Methoxychlor		<0.017	NA NA	NA NA	<0.017	NA NA	<0.017	NA NA	<0.017	NA NA	<0.017 [<0.017]	NA NA	<0.0020 J	<0.0031 J
Detected Inorganics		Q0.017	1473	1471	Q0.017	1471	20.017	14/1	Q0.017	1471	(0.017 [(0.017]	100	Q0.020 0	V0.001 0
Aluminum		3,200	NA	NA	1,550	NA	4,310 [3,740]	NA	2,180	NA	2,980 [1,350]	NA	8.83	3.10 J
Antimony		1.50 B	NA NA	NA NA	1,550 1,60 B	NA NA	<9.20 [<8.40]	NA NA	<10.0	NA NA	1.80 B [1.40 B]	NA NA	<0.0171 J	0.0198
Arsenic	16	<0.740	NA NA	NA NA	0.810 B	NA NA	5.60 [5.60]	NA NA	1.50 B	NA NA	1.40 B [1.40 B]	NA NA	0.00380 B	0.0196
Barium	10.000	67.1 B	NA NA	NA NA	67.2	NA NA	61.8 [49.6 B]	NA NA	75.3	NA NA	1.40 B [1.50 B] 102 [80.3]	NA NA	0.00360 B	0.0135
Beryllium	2.700	<0.370	NA NA	NA NA	<0.300	NA NA	<0.280 [<0.260]	NA NA	<0.300	NA NA	<0.420 [<0.300]	NA NA	<0.00290	0.0745
Cadmium	60	<0.370	NA NA	NA NA	<0.300	NA NA	<0.830 [<0.770]	NA NA	<0.300	NA NA	<0.420 [<0.300]	NA NA	<0.00290 <0.00440 J	0.00540
Calcium		140,000 E	NA NA	NA NA	152,000 E	NA NA	142,000 E [140,000 E]	NA NA	205,000 E	NA NA	253,000 E [192,000 E]	NA NA	<34.4	179
Chromium		5.70	NA NA	NA NA	3.10	NA NA	7.40 [6.40]	NA NA	3.80	NA NA	5.10 [3.50]	NA NA	0.0148	0.00500 B
Cobalt		3.50 B	NA NA	NA NA	1.70 B	NA NA	2.60 B [2.10 B]	NA NA	2.00 B	NA NA	2.90 B [1.60 B]	NA NA	0.0148	0.00300 B
	10.000	13.1	NA NA	NA NA	4.20 B	NA NA	18.6 [23.8]	NA NA	2.60 B	NA NA	7.40 B [4.70 B]	NA NA	0.0103	0.00210 B
Copper Cyanide	10,000	<0.930	<0.780	<0.680	<0.740	<0.790	<1.40 [<1.40]	22.1	<1.50	1.40	<0.790 [<0.760]	<0.790 [<0.760]	<0.0209	0.0000157 J
Iron	10,000	9,330 E	NA	NA	4,950 E	NA	8,240 E [7,540 E]	NA	6,180 E	NA	8,880 E [4,960 E]	NA	19.5 J	5.60 J
Lead	3,900	6.60	NA NA	NA NA	3.90	NA NA	32.2 E [90.0 N]	NA NA	3.70 E	NA NA	5.90 [4.40]	NA NA	0.00910 B	0.00330 B
Magnesium	3,900	7.460 E	NA NA	NA NA	5.350 E	NA NA	7,520 E [7,540 E]	NA NA	5.930 E	NA NA	8,180 E [5,800 E]	NA NA	<4.10	5.02 J
Manganese	10.000	247	NA NA	NA NA	217	NA NA	403 EN [335 EN]	NA NA	328 EN	NA NA	420 [330]	NA NA	0.160	0.220
Mercury	5.7	<0.180	NA NA	NA NA	<0.150	NA NA	0.250 N [0.240 N]	NA NA	<0.140	NA NA	<0.200 [<0.150]	NA NA	<0.00290	<0.00340
Nickel	10.000	11.2 B	NA NA	NA NA	5.70 B	NA NA	8.70 B [9.20 B]	NA NA	6.00 B	NA NA	9.70 B [5.40 B]	NA NA	0.0221	0.00660 B
Potassium		684 BE	NA NA	NA NA	430 BE	NA NA	624 E [435 N]	NA NA	345 E	NA NA	909 BE [416 BE]	NA NA	<1.97	1.03 J
Selenium	6,800	1.30 BN	NA NA	NA NA	<0.590	NA NA	<0.550 [0.410 BNW]	NA NA	0.480 BN	NA NA	0.940 BN [<0.600]	NA NA	<0.0234	0.0270
Silver	6,800	<0.370	NA NA	NA NA	<0.300	NA NA	<0.550 [<0.510]	NA NA	<0.610	NA NA	<0.420 [<0.300]	NA NA	<0.0234	0.00510
Sodium		10,100 E	NA NA	NA NA	1,710 E	NA NA	908 [932]	NA NA	683	NA NA	1,560 BE [1,170 BE]	NA NA	< 0.664	1.86
Thallium		<0.740	NA NA	NA NA	<0.590	NA NA	<1.10 [<1.00]	NA NA	<1.20	NA NA	<0.400 [<0.600]	NA NA	<0.0321	0.0372
Vanadium		6.00 B	NA NA	NA NA	3.60 B	NA NA	8.90 BE [9.00 BE]	NA NA	5.70 BE	NA NA	4.60 B [2.80 B]	NA NA	0.0145	0.00430 B
Zinc	10.000	35.1	NA NA	NA NA	25.6	NA NA	44.4 [42.4]	NA NA	16.0	NA NA	37.4 [21.9]	NA NA	0.0583	0.0184 B
Detected Miscellaneous	10,000	00.1			20.0		1[]				o[2o]		0.0000	0.0.0.D
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	l NA	NA	NA	NA	NA	NA	NA	NA NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
i otai Guiitli		INA	INA	INA	IN/A	INA	INA	INA	INA	INA	INA	INA	INA	INA

	6 NYCRR																
Location ID:	PART 375	MW-19D	MW-20D	MW-21S	MW-21D	MW-22S	MW-22D		SB-1		SB		SB-3		SE		
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	16 - 17 01/07/03	26 - 30 12/27/02	0 - 8 12/30/02	22 - 26 12/30/02	6 - 7 01/06/03	22 - 23 01/06/03	10 - 12 02/19/98	16 - 18 02/19/98	22 - 24 02/19/98	12 - 14 07/13/95	14 - 16 07/13/95	14 - 16 02/27/98	12 - 14 07/13/95	14 - 16 07/13/95	30 - 32 07/13/95	38 - 40 07/13/95
Soil Removed at San											Х	Х	Х	Х	Х		
Soil Stabilized at Sam												1					1
Detected PCBs	ipic Location .	1			l .	1	l .			1	1	1				l .	
Aroclor-1242		< 0.027	<0.025 [<0.029]	0.039	< 0.030	<0.031 J	< 0.027	NA	< 0.033	NA	NA						
Aroclor-1248		< 0.027	<0.025 [<0.029]	< 0.025	< 0.030	<0.031 J	< 0.027	NA	< 0.033	NA	NA						
Aroclor-1254		< 0.027	<0.025 [<0.029]	0.17	< 0.030	<0.031 J	< 0.027	NA	< 0.033	NA	NA						
Aroclor-1260		< 0.027	<0.025 [<0.029]	0.20	< 0.030	<0.031 J	<0.027	NA	< 0.033	NA	NA						
Total PCBs		< 0.053	<0.049 [<0.056]	0.41	<0.058	<0.071	< 0.053	NA	< 0.067	NA	NA						
Detected VOCs																	
2-Butanone	1,000	<0.016	<0.015 [0.027]	<0.0080	< 0.0070	<0.022 J	0.036 J	NA	<0.010	NA	<0.010	NA	<0.010	NA	<1.2	NA	NA
Acetone	1,000	0.013 J	0.047 [0.057]	0.034	< 0.0070	0.022 J	0.13 J	NA	0.021 B	NA	0.038	NA	0.053	NA	53 B	NA	NA
Benzene	89	1.3 J	0.17 J [0.28 J]	<0.0080	< 0.0070	<0.011 J	0.0010 J	0.0040 J	0.017	0.79	<0.010	<0.010	<0.010	9.5	30	0.58 J	0.022
Carbon Disulfide		0.014	0.0060 J [0.0060 J]	0.0050 J	<0.0070	<0.011 J	0.014	NA	<0.010	NA	<0.010	NA	<0.010	NA	<1.2	NA	NA
Chlorobenzene	1,000 700	0.013 <0.0080	0.012 [0.014] <0.0080 [<0.0090]	<0.0080	0.0010 <0.0070	<0.011 J <0.011 J	<0.0080	NA NA	<0.010 <0.010	NA NA	<0.010 <0.010	NA NA	<0.010 <0.010	NA NA	<1.2	NA NA	NA NA
Chloroform Ethylbenzene	700 780	<0.0080 0.10	<0.0080 [<0.0090] 0.0010 J [0.0030 J]	<0.0080 0.0040	<0.0070	<0.011 J <0.011 J	<0.0080	0.0040 J	<0.010 0.024	<0.010	<0.010	<0.010	<0.010	NA 2.6	<1.2 11	NA <1.2	NA 0.0020 J
Methylene Chloride	1.000	<0.0080	0.0050 J [0.0050 J]	<0.0040	0.0050	<0.011 J	<0.0080	NA	<0.010	NA	<0.010	NA	<0.010	NA	4.9	NA	NA
Naphthalene	1,000	<0.51	<0.49 [<0.56]	0.58 J	0.13 J	<0.71 J	<0.53	0.12 J	0.40 J	<0.33	1.0 B	<0.33	0.094 J	710 B	830 B	8.3 B	0.95 B
Styrene		<0.0080	<0.0080 [<0.0090]	<0.0080	<0.0070	<0.011 J	<0.0080	NA NA	<0.010	NA.	<0.010	NA.	<0.010	NA.	51	NA.	NA
Tetrachloroethene	300	<0.0080	<0.0080 [<0.0090]	<0.0080	< 0.0070	<0.011 J	<0.0080	NA	<0.010	NA	< 0.010	NA	<0.010	NA	<1.2	NA	NA
Toluene	1,000	0.19	0.0030 J [0.0030 J]	0.012	0.0090	0.0020 J	<0.0080	0.0030 J	0.063	< 0.010	0.0040 J	< 0.010	0.00080 J	11	76	1.6	0.030
Xylenes (total)	1,000	0.26	0.0030 J [0.0050 J]	0.035	0.0050 J	0.0040 J	<0.0080	0.011 J	0.13	< 0.010	< 0.010	< 0.010	< 0.010	62	140 E	2.0	0.031
Total BTEX		1.9 J	0.18 J [0.29 J]	0.051	0.014 J	0.0060 J	0.0010 J	0.022 J	0.23	0.79	0.0040 J	< 0.010	0.00080 J	85	260	4.2 J	0.085 J
Total VOCs		1.9 J	0.25 J [0.40 J]	0.090 J	0.020 J	0.028 J	0.18 J	0.022 J	0.26	0.79	0.042 J	<0.010	0.054 J	85	370	4.2 J	0.085 J
Detected SVOCs																	
2,4-Dimethylphenol		<0.51	<0.49 [<0.56]	< 0.96	< 0.59	<0.71 J	< 0.53	NA	< 0.33	NA	0.023 J	NA	< 0.33	NA	17 J	NA	NA
2-Chloronaphthalene		<0.51	<0.49 [<0.56]	<0.96	< 0.59	<0.71 J	< 0.53	NA	< 0.33	NA	< 0.33	NA	0.036 J	NA	< 0.33	NA	NA
2-Methylnaphthalene		<0.51	<0.49 [<0.56]	0.46 J	< 0.59	<0.71 J	< 0.53	0.026 J	0.041 J	< 0.33	0.14 J	< 0.33	0.029 J	120	280	3.1	0.12 J
2-Methylphenol	1,000	<0.51	<0.49 [<0.56]	<0.96 <1.9	<0.59 <1.2	<0.71 J	<0.53	NA NA	<0.33 <0.33	NA NA	0.024 J	NA NA	<0.33	NA NA	12 J <0.33	NA NA	NA NA
3,3'-Dichlorobenzidine 4-Methylphenol	1,000	<1.0 <0.51	<0.99 [<1.1] 0.65 J [0.80 J]	<0.96	<0.59	<1.4 J <0.71 J	<1.1 <0.53	NA NA	<0.33	NA NA	<0.33 0.070 J	NA NA	<0.33 <0.33	NA NA	<0.33 25 J	NA NA	NA NA
4-Nitroaniline	1,000	1.0	<0.99 [<1.1]	<1.9	<1.2	<0.713	<1.1	NA NA	<0.80	NA NA	<0.80	NA NA	<0.80	NA NA	<0.80	NA NA	NA NA
Acenaphthene	1.000	<0.51	<0.49 [<0.56]	0.24 J	<0.59	<0.71 J	<0.53	<0.33	<0.33	<0.33	0.079 J	<0.33	<0.33	86 J	23 J	0.26 J	<0.33
Acenaphthylene	1,000	<0.51	<0.49 [<0.56]	1.0	<0.59	<0.71 J	<0.53	<0.33	0.020 J	<0.33	0.10 J	< 0.33	<0.33	150 J	170	1.8 J	0.059 J
Anthracene	1,000	<0.51	<0.49 [<0.56]	1.2	< 0.59	<0.71 J	< 0.53	0.056 J	0.069 J	<0.33	0.30 J	< 0.33	0.018 J	150 J	120 J	1.4 J	0.057 J
Benzo(a)anthracene	11	<0.51	<0.49 [<0.56]	2.4	< 0.59	<0.71 J	< 0.53	0.10 J	0.17 J	< 0.33	0.46 J	< 0.33	0.022 J	120 J	80 J	0.92 J	0.042 J
Benzo(a)pyrene	1.1	<0.51	0.078 J [0.11 J]	2.5	< 0.59	<0.71 J	< 0.53	0.084 J	0.13 J	< 0.33	0.64 J	< 0.33	0.27 J	76 J	53 J	0.64 J	0.030 J
Benzo(b)fluoranthene	11	<0.51	<0.49 [<0.56]	2.1	< 0.59	<0.71 J	< 0.53	0.067 J	0.12 J	< 0.33	0.54 J	< 0.33	0.022 J	55 J	41 J	0.39 J	0.024 J
Benzo(g,h,i)perylene	1,000	<0.51	<0.49 [<0.56]	1.8	< 0.59	<0.71 J	< 0.53	0.080 J	0.087 J	< 0.33	0.14 J	< 0.33	0.076 J	12 J	9.1 J	0.099 J	0.0070 J
Benzo(k)fluoranthene	110	<0.51	<0.49 [<0.56]	2.1	< 0.59	<0.71 J	< 0.53	0.089 J	0.14 J	< 0.33	0.43 J	< 0.33	0.038 J	87 J	50 J	0.64 J	0.025 J
bis(2-Ethylhexyl)phthalate		<0.51	<0.49 [<0.56]	0.92 J	< 0.59	0.10 J	< 0.53	0.62 B	0.62 B	NA	0.40 JB	NA	0.12 JB	NA	0.14 JB	NA	NA
Butylbenzylphthalate		<0.51	<0.49 [<0.56]	<0.96	<0.59	<0.71 J	<0.53	NA	<0.33	NA	<0.33	NA	<0.33	NA	<0.33	NA	NA
Carbazole	110	<0.51 <0.51	<0.49 [<0.56] <0.49 [<0.56]	0.34 J 2.9	<0.59 <0.59	<0.71 J <0.71 J	<0.53 <0.53	NA 0.10 J	0.031 J 0.17 J	NA <0.33	0.23 J 0.53 J	NA <0.33	0.084 J 0.036 J	NA 99 J	110 J 66 J	NA 0.76 J	NA 0.042 J
Chrysene Dibenzo(a,h)anthracene	1.1	<0.51	<0.49 [<0.56]	0.72 J	<0.59	<0.71 J	<0.53	<0.33	<0.33	<0.33	0.53 J	<0.33	<0.33	99 J 18 J	12 J	0.76 J	0.042 J
Dibenzofuran	1.000	<0.51	<0.49 [<0.56]	0.72 J	<0.59	<0.71 J	<0.53	NA	0.030 J	NA	0.13 J	NA	0.040 J	NA	100 J	NA	NA
Diethylphthalate	1,000	<0.51	<0.49 [<0.56]	<0.96	<0.59	<0.71 J	<0.53	NA NA	<0.33	NA.	0.020 JB	NA NA	<0.33	NA NA	<0.33	NA NA	NA NA
Di-n-Butylphthalate		<0.51	<0.49 [<0.56]	0.052 J	<0.59	<0.71 J	<0.53	NA NA	<0.33	NA.	0.12 JB	NA.	0.016 JB	NA NA	<0.33	NA.	NA.
Fluoranthene	1,000	<0.51	<0.49 [<0.56]	4.8	< 0.59	<0.71 J	< 0.53	0.28 J	0.38 J	<0.33	0.74	<0.33	0.059 J	340	220	2.4	0.10 J
Fluorene	1,000	<0.51	<0.49 [<0.56]	0.32 J	< 0.59	<0.71 J	< 0.53	0.020 J	0.031 J	< 0.33	0.20 J	< 0.33	0.018 J	200	130 J	1.3 J	0.048 J
Indeno(1,2,3-cd)pyrene	11	<0.51	<0.49 [<0.56]	1.6	< 0.59	<0.71 J	< 0.53	0.048 J	0.093 J	< 0.33	0.33 J	< 0.33	0.13 J	39 J	24 J	0.30 J	0.016 J
Naphthalene	1,000	<0.51	<0.49 [<0.56]	0.58 J	0.13 J	<0.71 J	< 0.53	0.12 J	0.40 J	< 0.33	1.0 B	< 0.33	0.094 J	710 B	830 B	8.3 B	0.95 B
Phenanthrene	1,000	<0.51	<0.49 [<0.56]	3.1	< 0.59	<0.71 J	< 0.53	0.20 J	0.28 J	< 0.33	1.2	< 0.33	0.11 J	550	400	4.6	0.19 J
Phenol	1,000	<0.51	<0.49 [<0.56]	<0.96	0.096 J	<0.71 J	< 0.53	NA	< 0.33	NA	< 0.33	NA	<0.33	NA	16 J	NA	NA
Pyrene	1,000	<0.51	<0.49 [<0.56]	5.4	<0.59	<0.71 J	< 0.53	0.24 J	0.34 J	< 0.33	0.71	< 0.33	0.33 J	200	150	1.9 J	0.10 J
Total PAHs		<0.51	0.078 J [0.11 J]	33 J	0.13 J	<0.71	<0.53	1.5 J	2.5 J	<0.33	7.7 J	<0.33	1.3 J	3,000 J	2,700 J	29 J	1.8 J
Total SVOCs		1.0	0.73 J [0.91 J]	35 J	0.23 J	0.10 J	<2.6	2.1 J	3.2 J	< 0.33	8.8 J	< 0.33	1.6 J	3,000 J	2,900 J	29 J	1.8 J

Location ID:	6 NYCRR PART 375	MW-19D	MW-20D	MW-21S	MW-21D	MW-22S	MW-22D		SB-1		SB	-2	SB-3		SE	-4	
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	16 - 17 01/07/03	26 - 30 12/27/02	0 - 8 12/30/02	22 - 26 12/30/02	6 - 7 01/06/03	22 - 23 01/06/03	10 - 12 02/19/98	16 - 18 02/19/98	22 - 24 02/19/98	12 - 14 07/13/95	14 - 16 07/13/95	14 - 16 02/27/98	12 - 14 07/13/95	14 - 16 07/13/95	30 - 32 07/13/95	38 - 40 07/13/95
Soil Removed at Sam		0.701700	12/21/02	12/00/02	12,00,02	01/00/00	01/00/00	02/10/00	02/10/00	02/10/00	X	X	X	χ	χ	01710700	01710700
Soil Stabilized at Sam	•									1			^	^	^		
Detected Pesticides	pie Location :				l					1		l .					
4.4'-DDD	180	< 0.0053	<0.0049 J [<0.0056 J]	0.023 J	<0.0058 J	<0.0071 J	< 0.0053	NA	< 0.0033	NA NA	<0.0033	NA	< 0.0033	NA	< 0.0033	NA	NA
4.4'-DDE	120	<0.0053	<0.0049 J [<0.0056 J]	0.023 J	<0.0058 J	<0.0071 J	<0.0053	NA NA	<0.0033	NA NA	0.00060 JP	NA NA	<0.0033	NA NA	<0.0033	NA NA	NA NA
4.4'-DDT	94	<0.0053	<0.0049 J [<0.0056 J]	0.013 J	<0.0058 J	<0.0071 J	<0.0053	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	<0.0033	NA NA	NA NA
Aldrin	1.4	<0.0032	<0.0030 J [<0.0034 J]	<0.0029 J	<0.0035 J	<0.0043 J	<0.0032	NA NA	<0.0017	NA.	<0.0000	NA NA	<0.0017	NA NA	<0.0017	NA NA	NA.
Alpha-Chlordane	47	<0.0027	<0.0025 J [<0.0029 J]	0.0048 J	<0.0030 J	<0.0036 J	<0.0027	NA NA	<0.0017	NA.	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA NA	NA NA
Beta-BHC	14	<0.0027	<0.0025 J [<0.0029 J]	<0.0025 J	<0.0030 J	<0.0036 J	<0.0027	NA NA	<0.0017	NA.	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA.	NA NA
Delta-BHC	1.000	<0.0027	<0.0025 J [<0.0029 J]	<0.0025 J	<0.0030 J	<0.0036 J	<0.0027	NA NA	<0.0017	NA.	<0.0017	NA NA	<0.0017	NA NA	<0.0017	NA NA	NA.
Dieldrin	2.8	< 0.0053	<0.0049 J [<0.0056 J]	0.012 J	<0.0058 J	<0.0071 J	< 0.0053	NA NA	< 0.0033	NA.	< 0.0033	NA NA	< 0.0033	NA.	< 0.0033	NA.	NA.
Endosulfan II	920	< 0.0053	<0.0049 J [<0.0056 J]	<0.0048 J	<0.0058 J	<0.0071 J	< 0.0053	NA NA	<0.0033	NA.	< 0.0033	NA NA	< 0.0033	NA.	< 0.0033	NA.	NA.
Endosulfan Sulfate	920	< 0.0053	<0.0049 J [<0.0056 J]	<0.0048 J	<0.0058 J	<0.0071 J	< 0.0053	NA	< 0.0033	NA	NA						
Endrin	410	<0.0080	<0.0074 J [<0.0085 J]	<0.0073 J	<0.0089 J	<0.011 J	<0.0080	NA NA	<0.0033	NA.	< 0.0033	NA NA	< 0.0033	NA.	< 0.0033	NA.	NA.
Endrin Ketone		< 0.0053	<0.0049 J [<0.0056 J]	0.019 J	<0.0058 J	<0.0071 J	< 0.0053	NA	< 0.0033	NA	NA						
Gamma-Chlordane		<0.0027	<0.0025 J [<0.0029 J]	0.0067 J	<0.0030 J	<0.0036 J	<0.0027	NA	< 0.0017	NA	<0.0017	NA	< 0.0017	NA	< 0.0017	NA	NA
Heptachlor	29	<0.00056 J	<0.0025 J [<0.0029 J]	<0.0025 J	<0.0030 J	<0.0036 J	<0.0027	NA	< 0.0017	NA	<0.0017	NA	< 0.0017	NA	<0.0017	NA	NA
Methoxychlor		< 0.027	<0.025 J [<0.029 J]	<0.025 J	<0.030 J	<0.036 J	< 0.027	NA	< 0.017	NA	NA						
Detected Inorganics			•			1	1			1	1	1					
Aluminum		3.74	2.37 [2.34]	9.65	2.49	2.69 J	3.27	NA	2.660	NA	7.610	NA	1.090	NA	3.840	NA	NA
Antimony		0.0119	<0.0151 J [<0.0153 J]	<0.0142 J	<0.0153 J	0.0221 J	0.0169	NA	1.60 B	NA	<14.4	NA	< 0.880	NA	<11.9	NA	NA
Arsenic	16	0.00120 B	<0.0103 [<0.0105]	0.00910 B	< 0.0105	0.0151 J	0.0116	NA	< 0.640	NA	3.80 B	NA	< 0.590	NA	4.80	NA	NA
Barium	10,000	0.0892	0.0801 [0.0816]	0.168	0.0720	0.00770 J	0.0860	NA	67.5	NA	77.6 B	NA	66.5	NA	49.4 B	NA	NA
Beryllium	2,700	0.00200	<0.00260 [<0.00260]	< 0.00240	< 0.00260	0.00380 J	0.00290	NA	< 0.320	NA	< 0.440	NA	< 0.290	NA	< 0.360	NA	NA
Cadmium	60	0.00310	<0.00390 J [<0.00390 J]	0.00710 J	<0.00390 J	0.00570 J	0.00430	NA	< 0.320	NA	<1.30	NA	< 0.290	NA	<1.10	NA	NA
Calcium		178	178 [177]	76.2	171	296 J	184	NA	157,000 E	NA	221,000 E	NA	165,000 E	NA	232,000 E	NA	NA
Chromium		0.00580	0.00320 B [0.00330 B]	0.0622	0.00350 B	0.00260 JB	0.00510	NA	4.30	NA	12.4	NA	2.00 B	NA	5.90	NA	NA
Cobalt		0.00340	0.00200 B [0.00200 B]	0.00900	0.00230 B	0.00120 JB	0.00300	NA	2.40 B	NA	3.60 B	NA	0.880 B	NA	2.40 B	NA	NA
Copper	10,000	0.00690	0.00420 B [0.00490 B]	0.0889	0.00540 B	0.0174 J	0.00620 B	NA	5.10 B	NA	26.4	NA	1.10 B	NA	22.0	NA	NA
Cyanide	10,000	<0.00156 J	<0.00188 [<0.00208]	<0.000718	<0.000880	<1.04 J	<0.794 J	3.71	0.800	0.780	33.0	9.90	< 0.500	63.5	22.4	< 0.660	< 0.570
Iron		8.91	4.90 J [5.20 J]	20.2 J	5.58 J	1.70 J	7.95	NA	6,880 E	NA	11,600 E	NA	2,660	NA	4,890 E	NA	NA
Lead	3,900	0.00340 B	0.00190 B [0.00220 B]	0.163	0.00280 B	0.00610 JB	0.00330 B	NA	6.00	NA	73.4 E	NA	2.00	NA	15.4 E	NA	NA
Magnesium		7.10	<6.11 [<5.30]	13.2	<5.16	0.00339 J	0.00668	NA	6,540 E	NA	11,200 E	NA	4,410	NA	8,330 E	NA	NA
Manganese	10,000	0.234	0.167 [0.170]	0.355	0.218	0.339 J	0.232	NA	224	NA	690 EN	NA	452	NA	601 EN	NA	NA
Mercury	5.7	< 0.00250	<0.00210 [<0.00250]	0.000860 B	0.0000980 B	<0.00300 J	< 0.00260	NA	<0.120	NA	0.310 N	NA	<0.120	NA	<0.170	NA	NA
Nickel	10,000	0.00880	0.00520 B [0.00550 B]	0.0373	0.00530 B	0.00310 JB	0.00750	NA	7.80 B	NA	13.1 B	NA	4.00 B	NA	7.50 B	NA	NA
Potassium		1.15	<1.01 [<0.921]	<2.65	<0.893	0.101 JB	1.11	NA	854 BE	NA	1,120 E	NA	398 BE	NA	770 E	NA	NA
Selenium	6,800	0.0163	<0.0206 [<0.0210]	< 0.0194	< 0.0210	0.0302 J	0.0232	NA	< 0.640	NA	1.50 BNW	NA	< 0.590	NA	< 0.360	NA	NA
Silver	6,800	0.00310	<0.00390 [<0.00390]	0.00370	< 0.00390	0.00570 J	0.00430	NA	< 0.320	NA	<0.870	NA	<0.290	NA	<0.720	NA	NA
Sodium		6.38	<17.8 [<19.1]	<0.566	<1.75	4.19 J	21.4	NA	1,100 BE	NA	1,480	NA	896 BE	NA	8,730	NA	NA
Thallium		0.0225	<0.0283 [<0.0288]	<0.0266	<0.0288	0.0416 J	0.0318	NA	< 0.640	NA	<1.70	NA	< 0.590	NA	<1.40	NA	NA
Vanadium		0.00560	0.00340 B [0.00320 B]	0.0205	0.00380 B	0.00460 JB	0.00490 B	NA	4.00 B	NA	16.2 BE	NA	1.60 B	NA	9.70 BE	NA	NA
Zinc	10,000	0.0216	0.0135 B [0.0150 B]	0.223	0.0167 B	0.0378 J	0.0197 B	NA	43.8	NA	77.4	NA	15.9	NA	40.9	NA	NA
Detected Miscellaneous																	
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

SB-5 6 20 - 22 1/95 07/14/95 33 NA 33 NA 33 NA 33 NA	8 - 10 07/18/95 X	22 - 24 07/18/95	12 - 14 02/26/98	SB-7 14 - 16 02/26/98	20 - 22 02/26/98	SB-8 18 - 20 02/26/98	2 - 4	10 - 12	14 - 16	SB-9 20 - 22	28 - 30	38 - 40	48 - 50
33 NA 33 NA 33 NA	<0.033	07/18/95	02/26/98	02/26/98	02/26/98	02/26/00							
33 NA 33 NA 33 NA	<0.033					02/20/90	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00
133 NA 133 NA													
133 NA 133 NA													
133 NA 133 NA													
133 NA		NA	NA	NA	< 0.033	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	NA	< 0.033	NA	NA	NA	NA	NA	NA	NA	NA
	<0.033	NA	NA	NA	<0.033	NA	NA	NA	NA	NA	NA	NA	NA NA
167 NA	<0.033 <0.067	NA NA	NA NA	NA NA	<0.033 <0.067	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INA INA	<0.067	INA	INA	INA	<0.067	INA	INA	INA	INA	INA	INA	INA	INA
110 I NIA	-10	NIA	I NIA	I NIA	-0.010	NIA	NIA	NIA	I NIA	NIA.	T NIA	NIA	NA
													NA NA
													0.048
													NA
													NA NA
													NA NA
			0.35		0.097 J	0.045	<0.0060		0.0010 J	0.00080 J	0.0020 J	0.00050 J	<0.0050
	2.0 J	NA NA	NA	NA	<0.010	NA	NA	NA	NA	NA	NA	NA	NA
3 J 1.0	140 J	13	150	61	33	1.9	0.10 J	0.080 J	0.65 J	1.7	0.055 J	0.016 J	0.037 J
10 NA	<1.2	NA	NA	NA	0.076 J	NA	NA	NA	NA	NA	NA	NA	NA
110 NA	<1.2	NA	NA	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA
90 J 0.079	<1.2	<1.2	0.18	0.20	< 0.010	0.082	0.0010 J	0.00070 J	0.0020 J	0.0050 J	0.16	0.031	0.00040 J
	<1.2	0.86 J	7.6	5.9 E	2.0	0.42	0.00060 J	0.0020 J	0.0090 J	0.0090 J	0.041	0.0070	< 0.0050
													0.048 J
0 J 0.42	35 J	0.86 J	8.1	6.4 J	2.4 J	0.59	0.0021 J	0.0033 J	0.013 J	0.017 J	0.32 J	0.074 J	0.048 J
													NA
													NA
													0.016 J
													NA
													NA
													NA NA
													0.011 J
													0.011 J
													0.065 J
													0.078 J
													0.065 J
													0.059 J
	27 J	0.047 J	2.4 J	0.89 J		0.096 J	1,2 J	0.090 J	0.43 J	0.013 J	0.0020 J	0.020 J	0.037 J
) J 0.070 J	120 J	0.16 J	9.2 J	3.7 J	< 0.33	< 0.33	3.1	0.27 J	0.0050 J	0.034 J	0.0060 J	0.033 J	0.068 J
JB NA	< 0.33	NA	NA	NA	< 0.33	NA	NA	NA	NA	NA	NA	NA	NA
33 NA	< 0.33	NA	NA	NA	< 0.33	NA	NA	NA	NA	NA	NA	NA	NA
	49 J	NA	NA	NA	2.0 J	NA	NA	NA	NA	NA	NA	NA	NA
						< 0.33			0.0040 J		0.0070 J		0.071 J
													0.016 J
													NA
													NA
													NA
													0.17 J
													0.032 J
													0.041 J 0.037 J
													0.037 J 0.13 J
													0.13 J NA
													0.10 J
													1.0 J
													1.0 J
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	010 NA 23 J 1.0 010 NA 010 NA 010 NA 010 NA 010 0.30 90 J 0.42 33 NA .33 NA .33 NA .33 NA .33 NA .33 NA .34 NA .35 NA .36 NA .37 NA .38 NA .39 NA .39 NA .39 NA .39 NA .30 NA	121	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID:	6 NYCRR PART 375	SB	I-5	SE	I-6		SB-7		SB-8				SB-9			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	4 - 6 07/14/95	20 - 22 07/14/95	8 - 10 07/18/95	22 - 24 07/18/95	12 - 14 02/26/98	14 - 16 02/26/98	20 - 22 02/26/98	18 - 20 02/26/98	2 - 4 02/24/00	10 - 12 02/24/00	14 - 16 02/24/00	20 - 22 02/24/00	28 - 30 02/24/00	38 - 40 02/24/00	48 - 50 02/24/00
Soil Removed at San		Х		Х												
Soil Stabilized at Sam																
Detected Pesticides	pio Location i															
4,4'-DDD	180	< 0.0033	NA	< 0.0033	NA	NA	NA	< 0.0033	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	< 0.0033	NA	< 0.0033	NA	NA	NA	< 0.0033	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	< 0.0033	NA	< 0.0033	NA	NA	NA	< 0.0033	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	< 0.0017	NA	< 0.0017	NA	NA	NA	< 0.0017	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	< 0.0017	NA	<0.0017	NA	NA	NA	< 0.0017	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	< 0.0017	NA	<0.0017	NA	NA	NA	< 0.0017	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	< 0.0017	NA	<0.0017	NA	NA	NA	< 0.0017	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	< 0.0033	NA	< 0.0033	NA	NA	NA	< 0.0033	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	<0.0033	NA	0.060	NA	NA	NA	<0.0033	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	<0.0033	NA	0.084	NA	NA	NA	<0.0033	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	<0.0033	NA	<0.0033	NA	NA	NA	<0.0033	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		<0.0033	NA NA	<0.0033	NA NA	NA NA	NA NA	<0.0033	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane Heptachlor	29	<0.0017	NA NA	<0.0017 <0.0017	NA NA	NA NA	NA NA	<0.0017 <0.0017	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor		<0.0017	NA NA	<0.0017	NA NA	NA NA	NA NA	<0.0017	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics		<0.017	INA	<0.017	INA	INA	INA	<0.017	INA	INA	IVA	INA	INA	INA	INA	INA
Aluminum		5,480	NA	4,500	NA	NA	NA	2,860	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		<13.7	NA NA	<11.2	NA NA	NA NA	NA NA	1,40 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	16	4.70	NA NA	6.50	NA NA	NA	NA NA	1.40 B	NA.	NA.	NA.	NA NA	NA.	NA NA	NA.	NA NA
Barium	10.000	26.6 B	NA.	20.0 B	NA NA	NA	NA.	78.7	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA NA
Beryllium	2,700	<0.410	NA NA	< 0.340	NA NA	NA.	NA.	<0.330	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA NA
Cadmium	60	<1.20	NA	<1.00	NA	NA	NA	<0.330	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		260,000 E	NA	264,000 E	NA	NA	NA	204,000 E	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		8.50	NA	9.00	NA	NA	NA	5.30	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		3.40 B	NA	2.40 B	NA	NA	NA	3.00 B	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	52.7	NA	46.7	NA	NA	NA	6.20 B	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	5.20	1.90	17.3	<1.60	< 0.890	<0.880	< 0.500	1.96	17.9 J	8.56 J	<0.740 J	<1.72 J	<0.610 J	<0.570 J	0.570
Iron		6,890 E	NA	4,420 E	NA	NA	NA	9,030	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	25.9 E	NA	18.1 E	NA	NA	NA	4.80	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		13,600 E	NA	21,900 E	NA	NA	NA	7,190	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	791 EN	NA	709 EN	NA	NA	NA	384	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	0.240 N	NA	0.300 N	NA	NA	NA	<0.150	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	11.0 B	NA NA	9.10 B	NA	NA NA	NA NA	9.30 B	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Potassium	6.800	161 BE <0.410	NA NA	59.1 BE 1.80 N	NA NA	NA NA	NA NA	705 BE <0.660	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium Silver	6,800	<0.410	NA NA	<0.680	NA NA	NA NA	NA NA	< 0.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium	6,600	1.870	NA NA	3,100	NA NA	NA NA	NA NA	1.160 BE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		<1.60	NA NA	<1.40	NA NA	NA NA	NA NA	<0.660	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		15.4 BE	NA NA	12.6 BE	NA NA	NA NA	NA NA	3.80 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	47.2	NA NA	52.0	NA NA	NA NA	NA NA	39.6	NA.	NA.	NA.	NA NA	NA.	NA NA	NA.	NA NA
Detected Miscellaneous	. 0,000			02.0				00.0						1		
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA.	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID:	6 NYCRR PART 375			s	B-10							SB	-11			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/24/00	6 - 8 02/24/00	14 - 16 02/24/00	20 - 22 02/24/00	28 - 30 02/24/00	38 - 40 02/24/00	48 - 50 02/24/00	2 - 4 02/28/00	6 - 8 02/28/00	10 - 12 02/28/00	14 - 16 02/28/00	20 - 22 02/28/00	28 - 30 02/28/00	38 - 40 02/28/00	48 - 50 02/28/00
Soil Removed at Sar		X	X	X	02/24/00	02/24/00	02/24/00	02/24/00	X	X	X	X	02/20/00	02/20/00	02/20/00	02/20/00
	•	^	^	^					^	^	^	^				
Soil Stabilized at San Detected PCBs	nple Location :															l
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1242 Aroclor-1248		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA	NA NA	NA.
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs	•				•		•			•	•			•	•	
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	0.0020 J	<0.0050 J	0.00080 J [<0.0050]	< 0.0050	0.016	0.010	< 0.0050	0.0060 J	<0.0050 J	0.070 J	0.0020 J	0.062	0.34	0.00080 J	< 0.0050
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA 0.0040 J	NA 0.0050 J	NA OOFO (O OOFO)	NA 0.0050	NA 0.00000 J	NA 0.0050	NA	NA 0.0050 J	NA 0.0050 I	NA 0.0070 I	NA 0.0040 J	NA 0.040	NA 0.000	NA 0.0050	NA 0.0050
Ethylbenzene Mathylana Chlorida	780 1,000	0.0010 J NA	<0.0050 J NA	<0.0050 [<0.0050] NA	<0.0050 NA	0.00060 J NA	<0.0050 NA	<0.0050 NA	<0.0050 J NA	<0.0050 J NA	0.0070 J NA	0.0010 J NA	0.012 NA	0.029 NA	<0.0050 NA	<0.0050 NA
Methylene Chloride Naphthalene	1,000	0.80 J	16 J	0.72 [0.71]	3.0	0.028 J	0.012 J	0.0070 J	0.13 J	0.072 J	1.5 J	0.95	2.0	2.1	0.022 J	<0.33
Styrene	1,000	NA	NA	0.72 [0.71] NA	NA	0.028 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1,000	0.0050 J	0.00040 J	0.0020 J [0.00080 J]	0.0030 J	0.015	0.00030 J	<0.0050	0.0060 J	0.00030 J	0.051 J	0.0040 J	0.081	0.32	0.0010 J	0.00020 J
Xylenes (total)	1,000	0.025	0.0060 J	0.0020 J [0.0040 J]	0.014 J	0.0050 J	<0.0050	< 0.0050	0.0010 J	0.0010 J	0.089 J	0.017	0.16	0.26	0.0040 J	<0.0050
Total BTEX		0.033 J	0.0064 J	0.0048 J [0.0048 J]	0.017 J	0.037 J	0.010 J	< 0.0050	0.013 J	0.0013 J	0.22 J	0.024 J	0.32	0.95	0.0058 J	0.00020 J
Total VOCs		0.033 J	0.0064 J	0.0048 J [0.0048 J]	0.017 J	0.037 J	0.010 J	< 0.0050	0.013 J	0.0013 J	0.22 J	0.024 J	0.32	0.95	0.0058 J	0.00020 J
Detected SVOCs		•			•		•			•	•			•	•	
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		1.1 J	25 J	0.36 J [0.39 J]	0.61	< 0.33	< 0.33	< 0.33	0.20 J	0.022 J	0.64 J	0.51	0.85	0.045 J	< 0.33	< 0.33
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline Acenaphthene	1.000	NA 0.24 J	NA 3.8 J	NA 0.046 J [0.030 J]	NA 0.012 J	NA <0.33	NA <0.33	NA <0.33	NA 0.034 J	NA 0.016 J	NA 0.069 J	NA 0.074 J	NA 0.077 J	NA <0.33	NA <0.33	NA <0.33
Acenaphthylene	1,000	4.7	9.9 J	0.046 J [0.030 J]	0.012 J	<0.33	<0.33	<0.33	0.034 J	0.016 J	0.069 J	0.074 J	0.40 J	0.0080 J	<0.33	<0.33
Anthracene	1,000	4.5	34 J	0.062 J [0.036 J]	<0.33	<0.33	<0.33	<0.33	0.10 J	0.090 J	0.32 J	<0.33	<0.33	<0.33	<0.33	<0.33
Benzo(a)anthracene	11	24	2.0 J	0.018 J [0.019 J]	0.0060 J	<0.33	<0.33	<0.33	0.39	0.36 J	0.20 J	<0.33	0.0090 J	<0.33	<0.33	<0.33
Benzo(a)pyrene	1.1	23	14 J	0.017 J [0.021 J]	< 0.33	< 0.33	<0.33	<0.33	0.37 J	0.37 J	0.21 J	< 0.33	0.010 J	<0.33	<0.33	<0.33
Benzo(b)fluoranthene	11	22	12 J	0.012 J [0.014 J]	< 0.33	<0.33	<0.33	< 0.33	0.30 J	0.30 J	0.14 J	< 0.33	0.0090 J	< 0.33	< 0.33	<0.33
Benzo(g,h,i)perylene	1,000	18	7.4 J	<0.33 [0.012 J]	< 0.33	< 0.33	< 0.33	< 0.33	0.31 J	0.21 J	0.12 J	<0.33 J	<0.33 J	<0.33 J	<0.33 J	<0.33 J
Benzo(k)fluoranthene	110	19	14 J	0.019 J [0.022 J]	< 0.33	< 0.33	< 0.33	< 0.33	0.36 J	0.37 J	0.17 J	< 0.33	0.010 J	< 0.33	< 0.33	< 0.33
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA 10.1	NA NA	NA 0.0050	NA	NA	NA	NA 0.40	NA 0.40	NA .	NA	NA 0.0000 I	NA	NA	NA
Chrysene	110	23	16 J	0.016 J [0.016 J]	0.0050 J	<0.33	<0.33	<0.33	0.48	0.42 J	0.24 J	<0.33	0.0090 J	<0.33	<0.33	<0.33
Dibenzo(a,h)anthracene	1.1	7.8	2.9 J	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33	0.11 J	<0.33 J	<0.33 J	<0.33	<0.33	<0.33	<0.33	<0.33
Dibenzofuran Diethylphthalate	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	1.000	25	45 J	0.046 J [0.044 J]	0.016 J	<0.33	<0.33	<0.33	0.63	0.44 J	0.42 J	0.0050 J	0.019 J	<0.33	<0.33	<0.33
Fluorene	1,000	0.74 J	31 J	0.30 J [0.19 J]	0.010 J	<0.33	<0.33	<0.33	0.030 J	0.019 J	0.42 J	0.34 J	0.013 J	<0.33	<0.33	<0.33
Indeno(1,2,3-cd)pyrene	11	19	8.8 J	0.0090 J [0.011 J]	<0.33	<0.33	<0.33	<0.33	0.27 J	0.20 J	0.11 J	<0.33 J	<0.33 J	<0.33 J	<0.33 J	<0.33 J
Naphthalene	1,000	0.80 J	16 J	0.72 [0.71]	3.0	0.028 J	0.012 J	0.0070 J	0.13 J	0.072 J	1.5 J	0.95	2.0	2.1	0.022 J	<0.33
Phenanthrene	1,000	8.4	81 J	0.32 J [0.19 J]	0.018 J	0.0090 J	<0.33	<0.33	0.46 J	0.12 J	0.55 J	0.018 J	0.029 J	<0.33	< 0.33	<0.33
Phenol	1,000	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	25	26 J	0.030 J [0.026 J]	0.0090 J	< 0.33	< 0.33	< 0.33	0.58	1.5	1.0	< 0.33	0.018 J	< 0.33	< 0.33	< 0.33
Total PAHs		230 J	350 J	2.2 J [1.9 J]	3.9 J	0.037 J	0.012 J	0.0070 J	4.9 J	4.6 J	6.2 J	2.1 J	3.6 J	2.2 J	0.022 J	< 0.33
Total SVOCs		230 J	350 J	2.2 J [1.9 J]	3.9 J	0.037 J	0.012 J	0.0070 J	4.9 J	4.6 J	6.2 J	2.1 J	3.6 J	2.2 J	0.022 J	< 0.33
TOTAL SYOUS		230 J	350 J	2.2 J [1.9 J]	3.9 J	0.037 J	0.012 J	0.0070 J	4.9 J	4.6 J	ნ.∠ J	2.1 J	3.6 J	2.2 J	0.022 J	<0.33

Location ID	6 NYCRR : PART 375				SB-10							SB	i-11			
Sample Depth(Feet) Date Collected	: Industrial	2 - 4 02/24/00	6 - 8 02/24/00	14 - 16 02/24/00	20 - 22 02/24/00	28 - 30 02/24/00	38 - 40 02/24/00	48 - 50 02/24/00	2 - 4 02/28/00	6 - 8 02/28/00	10 - 12 02/28/00	14 - 16 02/28/00	20 - 22 02/28/00	28 - 30 02/28/00	38 - 40 02/28/00	48 - 50 02/28/00
Soil Removed at Sa		Х	Х	Х					Х	Х	Х	Х				
Soil Stabilized at Sa	•															
Detected Pesticides	inple Location .	I	I.	I				1		i			l			-
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA NA	NA.	NA NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA	NA.	NA NA
4,4'-DDT	94	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA	NA.	NA NA
Aldrin	1.4	NA.	NA.	NA NA	NA.	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA	NA.	NA NA
Alpha-Chlordane	47	NA.	NA.	NA NA	NA.	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA	NA.	NA NA
Beta-BHC	14	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																,
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	1.45	30.0 J	2.47 [2.03]	2.36	0.690	0.590	0.590	0.610	56.9 J	151 J	0.740	0.680	1.36	0.740	0.620
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Vanadium Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
-	10,000	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous	1															
Diesel Range Organics [C10-C28]		NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
Gasoline Range Organics [C6-C10]		NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
Ignitability		NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Arceler-1242 NA	Location ID:	6 NYCRR PART 375				SB-12		SB-13								
Detected PCBs																
Soil Stabilized at Sample Location NA NA NA NA NA NA NA N																
Discreted PCBS		•														
Arceler1242 NA	Detected PCBs															
Arcober 1286 NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Accept=1256																
Total PCDs	Aroclor-1254															
Desentation	Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2-Butanone	Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Acestone	Detected VOCs															
Benzene	2-Butanone	1,000						NA								
Carbon Disulfide	Acetone															
Chlorodenzene	Benzene															
Chloroform																
Ethybenzene																
Methylene																
Naphthalene																
System NA																
Tetrachiprotentene		,														
Toluene 1,000 4,0069 0,0030 0,0020 0,046 0,073 4,0050 0,00020 0,00023 0,0016 0,0033 0,0038 0,0084 0,0044 4,0068 0,0084 0,0084 0,0084 0,0084 0,0084 0,0084 0,0084 0,0084 0,0084 0,0086 0,0080 0,0																
Xylenes (total) 1,000 0,0056																
Total BTEX <- <- <- <- <- <- <- <- <- <- <- <- <																
Total VOCs <- <- <- <- <- <- <- <- <- <- <- <- <																
2.4-Dimethylphenol	Total VOCs			0.017 J		0.19	0.27 J	0.0040 J				0.075 J		0.13 J		
2-Chloronaphthalene	Detected SVOCs		•	•					•				•			
2-Methylphaphthalene	2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2-Methylphenol 1,000	2-Chloronaphthalene		NA			NA	NA	NA	NA	NA				NA	NA	
3.3-Dichlorobenzidine																
4-Methyphenol		,														
4-Nitroanline																
Acenaphthene																
Acenaphthylene																
Anthracene 1,000																
Benzo(a)anthracene																
Benzo(a)pyrene																
Benzo(b) fluoranthene																
Benzo(g,h,i)perylene	Benzo(b)fluoranthene															
bis(2-Ethylhexyl)phthalate	Benzo(g,h,i)perylene	1,000	<0.33 J	0.10 J	0.47 J	< 0.54	< 0.53	<0.33 J	<0.33 J	2.0	1.0	< 0.63	< 0.47	< 0.51	< 0.43	
Butylbenzylphthalate	Benzo(k)fluoranthene	110	0.016 J	0.22 J	< 0.47	< 0.54	< 0.53	< 0.33	< 0.33	3.1	1.8	0.13 J	< 0.47	< 0.51	< 0.43	
Carbazole NA	bis(2-Ethylhexyl)phthalate															
Chrysene 110 0.014 J 0.20 J <0.47 <0.54 <0.53 <0.33 <0.33 3.7 2.1 0.16 J 0.022 J <0.51 <0.43 Dibenzo(a,h)anthracene 1.1 <0.33 J	Butylbenzylphthalate															
Dibenzo(a,h)anthracene																
Dibenzofuran 1,000 NA																
Diethylphthalate NA																
Di-n-Butylphthalate NA NA <td></td>																
Fluoranthene 1,000 0.026 J 0.64 J <0.47 <0.54 <0.53 <0.33 <0.33																
Fluorene 1,000 <0.33 J 0.34 J 0.024 J <0.54 <0.53 <0.33 <0.33																
Indeno(1,2,3-cd)pyrene																
Naphthalene 1,000 0.013 J 1.8 J 0.083 J 2.0 0.14 J <0.33 <0.33 0.94 J 0.61 J 1.7 0.24 J 0.089 J <0.43 Phenanthrene 1,000 0.028 J 1.2 J <0.47																
Phenanthrene 1,000 0.028 J 1.2 J <0.47 <0.54 0.090 J <0.33 <0.33 5.9 2.4 0.16 J 0.081 J <0.51 <0.43 Phenol 1,000 NA																
Phenol 1,000 NA																
Pyrene 1,000 0.017 J 0.44 J <0.47 <0.54 <0.53 <0.33 <0.33 6.1 2.9 0.30 J 0.032 J <0.51 <0.43 Total PAHs 0.16 J 8.2 J 0.63 J 2.0 0.15 J <0.33																
Total PAHs 0.16 J 8.2 J 0.63 J 2.0 0.15 J <0.33 <0.33 45 J 23 J 3.5 J 0.50 J 0.089 J <0.43	Pyrene															
10.100 0.20 0.000 2.0 0.100 0.000 400 200 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Total SVOCs		0.16 J	8.2 J	0.63 J	2.0	0.15 J	< 0.33	< 0.33	45 J	23 J	3.5 J	0.50 J	0.089 J	< 0.43	

Location ID:	6 NYCRR PART 375				SB-12		SB-13							
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/28/00	10 - 12 02/28/00	14 - 16 02/28/00	20 - 22 02/28/00	28 - 30 02/28/00	38 - 40 02/28/00	48 - 50 02/28/00	2 - 4 03/15/00	6 - 8 03/15/00	10 - 12 03/15/00	20 - 22 03/15/00	28 - 30 03/15/00	48 - 50 03/15/00
Soil Removed at San		Х	Х	Х					Х	Х	Х			
Soil Stabilized at Sample Location :														
Detected Pesticides	ipie Location .								l					
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.
4,4'-DDT	94	NA	NA NA	NA.	NA.	NA	NA.	NA	NA NA	NA	NA	NA	NA	NA.
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics														
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	1.91	49.2	<0.690	<1.64 J	<1.59 J	0.720	0.630	2.50	8.60	3.00	1.60	<0.770	<0.660
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10,000 5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury Nickel	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium	0,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ZINC 1U,UUU NA														
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C10-C28]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA

	6 NYCRR						·											
Location ID:	PART 375				B-14				SB-15									
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/24/00	6 - 8 02/24/00	14 - 16 02/24/00	20 - 22 02/24/00	28 - 30 02/24/00	38 - 40 02/24/00	48 - 50 02/24/00	2 - 4 03/02/00	6 - 8 03/02/00	10 - 12 03/02/00	14 - 16 03/02/00	20 - 22 03/02/00	28 - 30 03/02/00	38 - 40 03/02/00	48 - 50 03/02/00		
Soil Removed at San	nple Location:								Х	Х	Х	Х						
Soil Stabilized at Sample Location :																		
Detected PCBs										1					U U			
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Detected VOCs																		
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzene	89	0.0080 [0.0050 J]	0.0090 J	0.0040 J	0.059	0.018	0.042	0.00040 J	0.011	<12 J	0.0050 J	0.0010 J	0.35	0.062	0.081	0.0050 J		
Carbon Disulfide	1.000	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA		
Chloroform	700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Chloroform Ethylbenzene	780	0.0020 J [0.0010 J]	0.0010 J	0.00070 J	0.028 J	0.033	0.0010 J	<0.0060	<0.0060	NA <12 J	0.029 J	0.030	0.052	0.0050 J	0.0030 J	<0.0050		
Methylene Chloride	1,000	0.0020 J [0.0010 J] NA	0.0010 J NA	0.00070 J NA	0.028 J NA	0.033 NA	0.0010 J	<0.0060 NA	<0.0060 NA	×12 J NA	0.029 J NA	0.030 NA	0.052 NA	0.0050 J NA	0.0030 J	<0.0050 NA		
Naphthalene	1,000	160 J [170 J]	0.39 J	0.66 J	2.1	9.1	0.029 J	0.0060 J	0.015 J	14 J [2.7 J]	12 J	10	12	0.85	0.17 J	0.011 J		
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Tetrachloroethene	300	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA		
Toluene	1,000	0.018 J [0.0080 J]	0.0060 J	0.0050 J	0.092	0.12	0.0060 J	0.0010 J	0.0010 J	<12 J	0.016 J	0.0040 J	1.3	0.068	0.014	0.00030 J		
Xylenes (total)	1,000	0.040 J [0.024 J]	0.015 J	0.011	0.11	0.25	0.013	0.0030 J	< 0.0060	0.47 J	0.26 J	0.083	0.72	0.052	0.020	< 0.0050		
Total BTEX		0.068 J [0.038 J]	0.031 J	0.021 J	0.29 J	0.42	0.062 J	0.0044 J	0.012 J	0.47 J	0.31 J	0.12 J	2.4	0.19 J	0.12 J	0.0053 J		
Total VOCs		0.068 J [0.038 J]	0.031 J	0.021 J	0.29 J	0.42	0.062 J	0.0044 J	0.012 J	0.47 J	0.31 J	0.12 J	2.4	0.19 J	0.12 J	0.0053 J		
Detected SVOCs																		
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2-Methylnaphthalene		78 J [92 J]	0.50 J	0.67 J	2.4	0.019 J	0.0040 J	0.0020 J	0.0030 J	15 J [2.3 J]	6.9 J	5.8	5.8	0.017 J	0.013 J	< 0.33		
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
4-Nitroaniline		NA NA	NA	NA	NA 0.074	NA	NA 0.40	NA 0.40	NA 0.40	NA NA	NA .	NA	NA 0.55	NA	NA	NA		
Acenaphthene	1,000	24 J [34 J]	0.25 J	0.14 J	0.074 J	<1.6	<0.42	<0.42	<0.42	23 J [9.1 J]	0.57 J	3.9	0.55 J	<0.33	<0.33	<0.33		
Acenaphthylene Anthracene	1,000	200 [260 J] 310 [380]	1.1 J 1.7 J	0.90 1.4	0.81 0.10 J	0.017 J 0.016 J	0.0040 J 0.0070 J	0.0020 J 0.0030 J	0.0090 J 0.0060 J	51 J [61 J] 140 J [74 J]	1.9 J 1.2 J	1.1 J 1.2 J	4.5 0.66 J	0.0070 J 0.014 J	<0.33 0.0060 J	<0.33		
Benzo(a)anthracene	1,000	570 [660]	1.7 J	1.6	0.10 J 0.12 J	0.016 J	0.0070 J	0.0030 J	0.0060 J	95 [90 J]	0.63 J	0.39 J	0.66 J	<0.33	<0.33	<0.33		
Benzo(a)pyrene	1.1	440 [460]	1.0 J	1.1	0.12 J	0.022 J	0.010 J	0.0030 J	0.012 J	70 [80 J]	0.55 J	0.39 J	0.10 J	<0.33	<0.33	<0.33		
Benzo(b)fluoranthene	11	300 [370]	0.78 J	0.95	0.030 J	0.013 J	0.0060 J	0.0030 J	0.010 J	61 J [58 J]	0.39 J	0.21 J	0.054 J	<0.33	<0.33	<0.33		
Benzo(g,h,i)perylene	1,000	260 [270 J]	0.46 J	0.43 J	0.072 J	<1.6	0.0020 J	<0.42	0.021 J	18 J [38 J]	0.22 J	0.095 J	0.020 J	<0.33	<0.33	<0.33		
Benzo(k)fluoranthene	110	540 [520]	1.4 J	1.1	0.10 J	0.021 J	0.0080 J	0.0040 J	0.023 J	83 [90 J]	0.54 J	0.28 J	0.060 J	< 0.33	<0.33	<0.33		
bis(2-Ethylhexyl)phthalate		NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA		
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Chrysene	110	480 [560]	1.4 J	1.4	0.10 J	0.018 J	0.0090 J	0.0050 J	0.015 J	75 [75 J]	0.55 J	0.31 J	0.072 J	< 0.33	< 0.33	< 0.33		
Dibenzo(a,h)anthracene	1.1	83 J [92 J]	0.16 J	0.18 J	0.013 J	<1.6	< 0.42	< 0.42	0.0070 J	9.0 J [15 J]	0.066 J	0.039 J	<2.1	< 0.33	< 0.33	< 0.33		
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Fluoranthene	1,000	1,200 [1,400]	3.8 J	4.1	0.33 J	0.052 J	0.021 J	0.011 J	0.015 J	210 [190 J]	1.4 J	1.2 J	0.29 J	0.016 J	0.012 J	<0.33		
Fluorene	1,000	140 J [180 J]	1.1 J	0.91	0.089 J	0.011 J	0.0050 J	0.0030 J	<0.42	160 [71 J]	2.8 J	3.0	2.6	0.016 J	<0.33	<0.33		
Indeno(1,2,3-cd)pyrene	11	260 [290 J]	0.50 J	0.49 J	0.034 J	0.0060 J	0.0030 J	<0.42	0.013 J	22 J [40 J]	0.20 J	0.11 J	0.025 J	<0.33	< 0.33	<0.33		
Naphthalene	1,000	160 J [170 J]	0.39 J	0.66 J	2.1	9.1	0.029 J	0.0060 J	0.015 J	14 J [2.7 J]	12 J	10	12	0.85	0.17 J	0.011 J		
Phenanthrene Phonol	1,000 1.000	740 J [930 J]	4.0 J NA	3.3 NA	0.19 J	0.044 J	0.019 J NA	0.010 J	0.0080 J	360 J [140 J]	4.1 J NA	5.0 NA	2.3 NA	0.033 J	0.019 J	0.0080 J NA		
Phenol	1,000	NA 980 J [1.400 J]	3.0 J	2.8	NA 0.22 J	NA 0.037 J	0.017 J	0.0090 J	NA 0.016 J	NA 180 J [140 J]	1.2 J	0.67 J	0.16 J	NA 0.011 J	NA 0.0080 J	<0.33		
Pyrene Total PAHs	1,000	6.800 J [1,400 J]	3.0 J 23 J	2.8 22 J	6.9 J	9.4 J	0.017 J 0.15 J	0.0090 J 0.067 J	0.016 J	1.600 J [1.200 J]	1.2 J 35 J	0.67 J	29 J	0.011 J	0.0080 J 0.23 J	<0.33 0.019 J		
Total SVOCs		6,800 J [8,100 J]	23 J	22 J	6.9 J	9.4 J	0.15 J	0.067 J	0.20 J	1,600 J [1,200 J]	35 J	34 J	29 J	0.96 J	0.23 J	0.019 J		
10(0) 0 0 0 0 0		J,000 J [0, 100 J]	23 J	22 J	0.93	∂.4 J	U. 10 J	U.UU1 J	U.ZU J	1,000 J [1,200 J]	JJ J	J+ J	20 J	U.JU J	U.23 J	0.0183		

	6 NYCRR						·										
Location ID:	PART 375		SI	B-14			SB-15										
Sample Depth(Feet):	Industrial	2 - 4	6 - 8	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50	
Date Collected:	Use SCOs	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	
Soil Removed at San	nple Location:								Х	Х	Х	Х					
Soil Stabilized at Sam	ple Location:																
Detected Pesticides																	
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Detected Inorganics																	
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cyanide	10,000	21.8 J [18.7 J]	2.87 J	<0.670 J	<1.57 J	<2.91 J	<0.650 J	<0.620 J	< 0.640	30.4 J [12.2 J]	3.23 J	< 0.690	1.19	0.600	0.610	0.610	
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Manganese	10,000	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Nickel	10,000	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Sodium		NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Thallium		NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	
Vanadium	40.000	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Detected Miscellaneous																	
Diesel Range Organics [C10-C28]		NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
pH		NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

Location ID:	6 NYCRR PART 375			SB-	16						SB-17			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	6 - 8 03/03/00	10 - 12 03/03/00	14 - 16 03/03/00	20 - 22 03/03/00	38 - 40 03/03/00	48 - 50 03/03/00	6 - 8 02/29/00	10 - 12 02/29/00	14 - 16 02/29/00	20 - 22 02/29/00	28 - 30 02/29/00	38 - 40 02/29/00	48 - 50 02/29/00
Soil Removed at Sai	mple Location:	Х	Х	Х				Х	Х	Х				
Soil Stabilized at San	•													
Detected PCBs	ilpie Location .		I.	I.	I						I		1	
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA.	NA.	NA.	NA NA	NA.	NA	NA.	NA NA	NA.	NA.	NA.	NA NA	NA NA
Aroclor-1254		NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs														
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	<0.012 J	0.00090 J	0.00060 J	0.074	0.12	0.0020 J	0.013 J	0.0010 J	0.0040 J	0.032	0.15	0.034	0.00080 J
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	<0.012 J	<0.011 J	0.0010 J	0.019	< 0.0060	< 0.0060	0.013 J	< 0.0070	0.00060 J	0.0060 J	< 0.0060	< 0.0060	< 0.0060
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	9.0 J	2.6 J	2.7 J	3.9	0.011 J	0.11 J	0.024 J	0.83	0.17 J	0.68	< 0.42	< 0.39	< 0.37
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.00040 J	0.00040 J	0.0040 J	0.15	0.0020 J	<0.0060	0.0010 J	0.0030 J	0.0060 J	0.027	0.047	0.0010 J	0.00050 J
Xylenes (total)	1,000	<0.012 J	<0.011 J	0.024	0.26	0.00090 J	<0.0060	0.013 J	0.0040 J	0.011	0.093	0.00070 J	<0.0060	<0.0060
Total BTEX		0.00040 J	0.0013 J	0.030 J	0.50	0.12 J	0.0020 J	0.040 J	0.0080 J	0.022 J	0.16 J	0.20 J	0.035 J	0.0013 J
Total VOCs		0.00040 J	0.0013 J	0.030 J	0.50	0.12 J	0.0020 J	0.040 J	0.0080 J	0.022 J	0.16 J	0.20 J	0.035 J	0.0013 J
Detected SVOCs														
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	4.000	8.8 J	2.1 J	1.2 J	0.92	<0.40	0.011 J	0.82 J	0.31 J	0.059 J	0.052 J	<0.42	<0.39	<0.37
2-Methylphenol	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol 4-Nitroaniline	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene	1.000	18 J	8.1 J	0.20 J	0.11 J	<0.40	0.0030 J	0.82 J	0.080 J	0.0080 J	<0.50	<0.42	<0.39	<0.37
Acenaphthylene	1,000	93 J	30 J	0.20 J	0.113	0.0020 J	0.0030 J	0.82 J	0.060 J	0.0080 J	0.018 J	<0.42	<0.39	<0.37
Anthracene	1,000	210 J	75	0.48 J	0.32 J	0.0020 J	0.020 J	0.82 J	0.001 J	<0.42	0.018 J	<0.42	<0.39	<0.37
Benzo(a)anthracene	11	170 J	71	0.70 J	0.40 J	0.0020 J	0.023 J	0.82 J	0.031 J	<0.42	0.028 J	<0.42	<0.39	<0.37
Benzo(a)pyrene	1.1	120 J	50	0.53 J	0.30 J	0.0030 J	0.070 J	0.82 J	0.14 J	<0.42	0.020 J	<0.42	< 0.39	< 0.37
Benzo(b)fluoranthene	11	100 J	40	0.52 J	0.20 J	0.0060 J	0.070 J	0.82 J	0.086 J	<0.42	0.018 J	<0.42	< 0.39	< 0.37
Benzo(q,h,i)perylene	1.000	41 J	18 J	0.17 J	0.048 J	<0.40	0.022 J	0.82 J	0.12 J	<0.42	<0.50	<0.42	<0.39	< 0.37
Benzo(k)fluoranthene	110	120 J	57	0.52 J	0.38 J	0.0030 J	0.073 J	0.82 J	0.12 J	< 0.42	0.023 J	< 0.42	< 0.39	< 0.37
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	140 J	57	0.57 J	0.39 J	0.0050 J	0.080 J	0.82 J	0.10 J	< 0.42	0.027 J	<0.42	< 0.39	< 0.37
Dibenzo(a,h)anthracene	1.1	17 J	6.9 J	0.082 J	0.025 J	<0.40	0.011 J	0.82 J	< 0.63	< 0.42	< 0.50	<0.42	< 0.39	< 0.37
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	460 J	160	1.2 J	0.74	0.0060 J	0.14 J	0.024 J	0.30 J	<0.42	0.063 J	<0.42	<0.39	<0.37
Fluorene	1,000	120 J	60	1.1 J	0.53	<0.40	0.016 J	0.82 J	0.085 J	0.022 J	0.016 J	<0.42	<0.39	<0.37
Indeno(1,2,3-cd)pyrene	11	480 J	20 J	0.21 J	0.068 J	<0.40	0.026 J	0.82 J	0.089 J	<0.42	<0.50	<0.42	<0.39	<0.37
Naphthalene	1,000	9.0 J	2.6 J	2.7 J	3.9	0.011 J	0.11 J	0.024 J	0.83	0.17 J	0.68	<0.42	<0.39	<0.37
Phenal	1,000	490 J	190	1.3 J	0.69	0.0080 J	0.070 J	0.026 J	0.74	<0.42	0.090 J	<0.42	<0.39	<0.37
Phenol	1,000 1,000	NA 270 J	NA 100	NA 1.2 J	NA 0.59	NA 0.0070 J	NA 0.14 L	NA 0.020 J	NA 0.15 J	NA <0.42	NA 0.048 J	NA <0.42	NA <0.39	NA <0.37
Pyrene Total PAHs	1,000	2,900 J	950 J	1.2 J 14 J	0.59 10 J	0.0070 J 0.056 J	0.14 J 0.98 J	0.020 J 11 J	0.15 J 3.4 J	<0.42 0.28 J	0.048 J 1.1 J	<0.42	<0.39	<0.37
Total SVOCs		2,900 J 2,900 J	950 J 950 J	14 J	10 J	0.056 J	0.98 J	11 J	3.4 J	0.28 J	1.1 J	<0.42	<0.39	<0.37
10tai 07005		2,900 J	900 J	14 J	103	0.000 J	0.30 J	113	3.4 J	U.20 J	1.13	<u.4z< td=""><td><0.38</td><td><0.31</td></u.4z<>	<0.38	<0.31

Location ID:	6 NYCRR PART 375			SB-	16						SB-17			
Sample Depth(Feet): Date Collected:		6 - 8 03/03/00	10 - 12 03/03/00	14 - 16 03/03/00	20 - 22 03/03/00	38 - 40 03/03/00	48 - 50 03/03/00	6 - 8 02/29/00	10 - 12 02/29/00	14 - 16 02/29/00	20 - 22 02/29/00	28 - 30 02/29/00	38 - 40 02/29/00	48 - 50 02/29/00
Soil Removed at Sa	mple Location:	Х	х	х				х	х	Х				
Soil Stabilized at Sar	nnle I ocation :													
Detected Pesticides	iipic Location .	<u> </u>	l	l	l l			l	l	<u> </u>		<u> </u>		
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
4.4'-DDT	94	NA.	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA NA
Aldrin	1.4	NA.	NA.	NA.	NA.	NA	NA NA	NA NA	NA.	NA	NA NA	NA.	NA NA	NA NA
Alpha-Chlordane	47	NA.	NA.	NA.	NA.	NA	NA NA	NA NA	NA.	NA	NA NA	NA.	NA NA	NA NA
Beta-BHC	14	NA.	NA NA	NA.	NA.	NA	NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA
Delta-BHC	1,000	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Dieldrin	2.8	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Endosulfan II	920	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Endosulfan Sulfate	920	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Endrin	410	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Ketone		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane		NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Heptachlor	29	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	23	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA
Detected Inorganics		1471	14/1	14/1	1471	1471	101	100	101	14/1	1471	1471	14/1	147
Aluminum		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	- ::	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	16	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium	2,700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	60	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cobalt		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Copper	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cvanide	10,000	175 J	74.6 J	6.67	0.730	<0.610	<0.590	14.9 J	2.66 J	<0.660 J	<0.810 J	<0.600 J	<0.620 J	<0.590 J
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium	3,300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium		NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium	- ::	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium	- ::	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C10-C28]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3 3 1		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
F		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA			NA NA	NA NA		
Total Sulfur		INA	NA NA	INA	INA	NA	NA	NA.	NA	NA	NA	NA	NA	NA

Location ID:	6 NYCRR PART 375				SB-18							SB-19			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	6 - 8 03/16/00	10 - 12 03/16/00	14 - 16 03/16/00	20 - 22 03/16/00	28 - 30 03/16/00	38 - 40 03/16/00	48 - 50 03/16/00	2 - 4 03/16/00	6 - 8 03/16/00	14 - 16 03/16/00	20 - 22 03/16/00	28 - 30 03/16/00	38 - 40 03/16/00	48 - 50 03/16/00
Soil Removed at Sar		X	X	X	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00	03/10/00
	•	^	^	^											
Soil Stabilized at Sam	ple Location :														l .
Detected PCBs		NIA.	NIA.	NIA.	NIA.	NIA	NIA	NIA	NIA	NIA	NIA.	NIA	NIA	NIA.	NIA.
Aroclor-1242 Aroclor-1248		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1248 Aroclor-1254		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254 Aroclor-1260		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total PCBs		NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Detected VOCs		14/1	1471	1473	1471	1471	1471	1471	1471	1471	1471	1471	1471	147.	1471
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Benzene	89	<0.012	0.0037 J	<0.0068	0.017	0.26	0.033	<0.0057	<0.0077	<0.013	0.0019 J	0.036	0.17	<0.0060	<0.0060
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	< 0.012	0.0052 J	<0.0068	0.0037 J	<0.0068	<0.0058	< 0.0057	< 0.0077	< 0.013	< 0.0075	0.0099	< 0.0076	< 0.0060	< 0.0060
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	<0.75	0.40 J	0.090 J	0.56 J	<0.44	<0.38	<0.38	0.084 J	<0.72	< 0.45	0.15 J	<0.51	<0.41	0.045 J
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.0037 J	0.013	0.0032 J	0.029	0.052	<0.0058	< 0.0057	< 0.0077	< 0.013	0.0024 J	0.048	0.051	<0.0060	<0.0060
Xylenes (total)	1,000	0.0065 J	0.039	0.0028 J	0.052	<0.0068	<0.0058	<0.0057	<0.0077	<0.013	0.0065 J	0.12	<0.0076	<0.0060	<0.0060
Total BTEX		0.010 J	0.061 J	0.0060 J	0.10 J	0.31	0.033	<0.0057	<0.0077	<0.013	0.011 J	0.21	0.22	<0.0060	<0.0060
Total VOCs		0.010 J	0.061 J	0.0060 J	0.10 J	0.31	0.033	< 0.0057	<0.0077	<0.013	0.011 J	0.21	0.22	<0.0060	<0.0060
Detected SVOCs															
2,4-Dimethylphenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Chloronaphthalene 2-Methylnaphthalene		0.041 J	0.60	0.034 J	<0.56	<0.44	<0.38	<0.38	0.12 J	<0.72	<0.45	<0.48	<0.51	<0.41	0.024 J
2-Methylphenol	1,000	0.041 J NA	NA	0.034 J NA	<0.56 NA	<0.44 NA	<0.36 NA	<0.36 NA	NA	<0.72 NA	<0.45 NA	<0.46 NA	NA	<0.41 NA	0.024 J NA
3,3'-Dichlorobenzidine		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
4-Methylphenol	1,000	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	< 0.75	0.014 J	< 0.45	< 0.56	< 0.44	< 0.38	< 0.38	0.025 J	< 0.72	< 0.45	< 0.48	< 0.51	< 0.41	< 0.38
Acenaphthylene	1,000	< 0.75	0.020 J	< 0.45	< 0.56	< 0.44	< 0.38	< 0.38	0.079 J	< 0.72	< 0.45	< 0.48	< 0.51	< 0.41	< 0.38
Anthracene	1,000	< 0.75	0.091 J	< 0.45	< 0.56	< 0.44	< 0.38	< 0.38	0.097 J	< 0.72	< 0.45	< 0.48	< 0.51	< 0.41	0.051 J
Benzo(a)anthracene	11	< 0.75	0.32 J	< 0.45	< 0.56	< 0.44	<0.38	< 0.38	0.83	< 0.72	< 0.45	<0.48	< 0.51	< 0.41	0.24 J
Benzo(a)pyrene	1.1	< 0.75	0.24 J	< 0.45	< 0.56	< 0.44	< 0.38	< 0.38	0.67	< 0.72	< 0.45	0.035 J	< 0.51	< 0.41	0.13 J
Benzo(b)fluoranthene	11	< 0.75	0.16 J	< 0.45	< 0.56	< 0.44	< 0.38	<0.38	0.43 J	< 0.72	< 0.45	<0.48	<0.51	< 0.41	0.16 J
Benzo(g,h,i)perylene	1,000	<0.75	<0.58	<0.45	< 0.56	< 0.44	<0.38	<0.38	0.33 J	< 0.72	< 0.45	<0.48	<0.51	<0.41	<0.38
Benzo(k)fluoranthene	110	<0.75	0.24 J	<0.45	< 0.56	< 0.44	<0.38	<0.38	0.51 J	<0.72	< 0.45	<0.48	<0.51	<0.41	0.14 J
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA 0.75	NA 0.04	NA 0.45	NA 0.50	NA 0.44	NA 0.00	NA 0.00	NA 4.0	NA 0.70	NA 0.45	NA 0.40	NA 0.54	NA 0.44	NA 0.00 I
Chrysene	110 1.1	<0.75 <0.75	0.31 J <0.58	<0.45 <0.45	<0.56 <0.56	<0.44	<0.38 <0.38	<0.38 <0.38	1.0 0.098 J	<0.72 <0.72	<0.45 <0.45	<0.48 <0.48	<0.51 <0.51	<0.41 <0.41	0.22 J <0.38
Dibenzo(a,h)anthracene Dibenzofuran	1,000	<0.75 NA	<0.58 NA	<0.45 NA	<0.56 NA	<0.44 NA	<0.38 NA	<0.38 NA	0.098 J NA	<0.72 NA	<0.45 NA	<0.48 NA	<0.51 NA	<0.41 NA	<0.38 NA
Diethylphthalate	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	1.000	<0.75	0.44 J	<0.45	<0.56	<0.44	<0.38	<0.38	0.83	<0.72	<0.45	<0.48	<0.51	<0.41	0.50
Fluorene	1,000	<0.75	0.44 J	<0.45	<0.56	<0.44	<0.38	<0.38	<0.55	<0.72	0.039 J	<0.48	<0.51	<0.41	<0.38
Indeno(1,2,3-cd)pyrene	11	<0.75	0.11 J	<0.45	<0.56	<0.44	<0.38	<0.38	0.28 J	<0.72	<0.45	<0.48	<0.51	<0.41	0.034 J
Naphthalene	1.000	<0.75	0.40 J	0.090 J	0.56 J	<0.44	<0.38	<0.38	0.084 J	<0.72	<0.45	0.15 J	<0.51	<0.41	0.045 J
Phenanthrene	1,000	0.043 J	0.32 J	<0.45	<0.56	<0.44	<0.38	<0.38	0.75	<0.72	0.026 J	<0.48	<0.51	<0.41	0.16 J
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	< 0.75	0.49 J	< 0.45	< 0.56	<0.44	<0.38	<0.38	1.3	< 0.72	< 0.45	<0.48	<0.51	< 0.41	0.35 J
Total PAHs		0.084 J	3.8 J	0.12 J	0.56 J	<0.44	<0.38	<0.38	7.4 J	< 0.72	0.065 J	0.19 J	<0.51	<0.41	2.1 J
Total SVOCs		0.084 J	3.8 J	0.12 J	0.56 J	<0.44	< 0.38	<0.38	7.4 J	< 0.72	0.065 J	0.19 J	<0.51	< 0.41	2.1 J

	6 NYCRR					· ·									
Location ID:	PART 375				SB-18							SB-19			
Sample Depth(Feet): Date Collected:		6 - 8 03/16/00	10 - 12 03/16/00	14 - 16 03/16/00	20 - 22 03/16/00	28 - 30 03/16/00	38 - 40 03/16/00	48 - 50 03/16/00	2 - 4 03/16/00	6 - 8 03/16/00	14 - 16 03/16/00	20 - 22 03/16/00	28 - 30 03/16/00	38 - 40 03/16/00	48 - 50 03/16/00
Soil Removed at Sa	mple Location:	Х	х	Х											
Soil Stabilized at San	nnle I ocation :														1
Detected Pesticides	iipic Location .	l				J	l				l		l l	l l	
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA NA	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics															
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	69.5	42.1	1.60	<0.810	< 0.570	<0.530	<0.570	1.50	91.6	<0.560	<0.660	<0.760	<0.480	< 0.560
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
		NIA.	l NIA	NIA	NIA	NIA	NIA.	NIA	NIA	NIA	NIA.	NIA	NIA	NIA	NIA.
Diesel Range Organics [C10-C28]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability											NA NA	NA NA	NA NA		
pH Total Cultur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				NA NA	NA NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID:	6 NYCRR PART 375				SE	3-20							SB-2	1			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/22/00	8 - 10 02/22/00	10 - 12 02/22/00	14 - 16 02/22/00	20 - 22 02/22/00	28 - 30 02/22/00	38 - 40 02/22/00	48 - 50 02/22/00	2 - 4 02/21/00	6 - 8 02/21/00	10 - 12 02/21/00	14 - 16 02/21/00	20 - 22 02/21/00	28 - 30 02/21/00	38 - 40 02/21/00	48 - 50 02/21/00
Soil Removed at Sam	ple Location:									Х	Х	Х	х				
Soil Stabilized at Sam																	
Detected PCBs	pie Location :				l .					l .	l .			l .	1		
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254		NA NA	NA.	NA	NA.	NA NA	NA	NA	NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs															ı		
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	0.0060 J	0.0030 J	0.013	0.0020 J	0.018 J	0.070	0.052	0.0010 J	0.0010 J	0.0010 J	0.0010 J	<1.8 [<1.9]	0.0020 J	0.053	0.14	< 0.0070
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	0.0060 J	0.0060 J	0.076	0.018	0.30	0.034	0.0070	<0.0060	<0.0080	<0.017	0.0050 J	<1.8 [<1.9]	0.0060 J	0.022 J	0.023 J	<0.0070
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	<0.22	0.42 JB	0.85 B	0.65 B	2.5 B	8.6 B	2.5 B	0.31 JB	0.25 J	66 J	0.31 J	7.6 J [14 J]	8.5	8.2	2.5	0.042 J
Styrene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene		NA 0.0030 J	NA 0.0050 J	NA 0.078	NA 0.048	NA 0.45	NA 0.23	NA 0.0080	NA 0.00070 J	NA 0.0050 J	NA 0.0000 J	NA 0.0020 J	NA 0.27 J [0.23 J]	NA 0.0000 J	NA 0.12	NA 0.14	NA <0.0070
Toluene	1,000 1,000	0.0030 J	0.0050 J	0.078	0.048	1.9	0.23	0.0080	0.00070 J 0.0010 J	0.0050 J	0.0020 J 0.0040 J	0.0020 J	0.27 J [0.23 J] 0.52 J [0.78 J]	0.0080 J 0.075	0.12	0.14	<0.0070
Xylenes (total) Total BTEX	1,000	0.0060 J	0.033 0.047 J	0.44	0.13 0.20 J	2.7 J	0.37	0.027	0.0010 J	0.0020 J	0.0040 J	0.020 0.028 J	0.52 J [0.76 J]	0.075 0.091 J	0.28 0.48 J	0.50 J	<0.0070
Total VOCs		0.021 J	0.047 J	0.61	0.20 J	2.7 J	0.70	0.094	0.0027 J	0.0080 J	0.0070 J	0.028 J	0.79 J [1.0 J]	0.091 J	0.48 J	0.50 J	<0.0070
Detected SVOCs		0.0213	0.047 3	0.01	0.20 3	2.7 J	0.70	0.094	0.0027 3	0.0060 3	0.00703	0.026 3	0.793[1.03]	0.0913	0.46 J	0.50 3	<0.0070
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene		0.22 J	0.015 J	0.17 J	1.1	2.2	<1.6	0.060 J	0.013 J	0.33 J	74 J	0.16 J	5.4 [5.6]	5.9	0.044 J	0.25 J	0.018 J
2-Methylphenol	1,000	NA	NA	NA	NA.	NA NA	NA NA	NA	NA	NA	NA.	NA NA	NA	NA NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	0.23 J	0.61	0.37 J	0.070 J	0.16 J	<1.6	< 0.39	<0.38	2.0	51 J	2.4 J	0.80 J [0.45 J]	0.85 J	<1.6	0.025 J	<0.38
Acenaphthylene	1,000	3.8 J	0.22 J	0.20 J	0.26 J	0.91	<1.6	0.015 J	<0.38	0.63 J	290	7.9	4.6 J [3.0 J]	5.0	<1.6	0.14 J	0.0090 J
Anthracene	1,000	11	0.25 J	0.13 J	0.029 J	0.029 J	<1.6	< 0.39	<0.38	2.9	480	10	3.7 J [1.5 J]	6.3	<1.6	0.16 J	0.013 J
Benzo(a)anthracene	11	29	0.90	0.46 J	0.022 J	< 0.55	<1.6	< 0.39	<0.38	3.8	470	14	2.3 J [0.76 J]	4.3	<1.6	0.13 J	0.010 J
Benzo(a)pyrene	1.1	20	0.79 J	0.65	0.023 J	< 0.55	<1.6	< 0.39	<0.38	3.2 J	300	9.2	1.5 J [0.50 J]	2.7	<1.6	0.083 J	<0.38
Benzo(b)fluoranthene	11	24	0.72 J	0.53 J	0.020 J	<0.55	<1.6	0.011 J	<0.38	3.9 J	230	7.7	1.1 J [0.34 J]	2.3 J	<1.6	0.055 J	0.0070 J
Benzo(g,h,i)perylene	1,000	1.7 J	0.080 J	0.084 J	<0.55	<0.55	<1.6 J	<0.39	<0.38	0.69 J	23 J	0.87 J	0.39 J [0.29 J]	0.48 J	<1.6 J	0.036 J	<0.38
Benzo(k)fluoranthene	110	22 NA	1.1 J NA	0.70 NA	0.025 J NA	<0.55 NA	<1.6	0.0080 J	<0.38 NA	6.7 J NA	380 NA	11 NA	1.6 J [0.58 J]	2.8 NA	<1.6 NA	0.11 J NA	<0.38 NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	110	22	0.73	0.47 J	0.021 J	<0.55	<1.6	0.011 J	<0.38	3.4	340	10	1.7 J [0.55 J]	3.2	<1.6	0.086 J	0.0080 J
Dibenzo(a.h)anthracene	1.1	1.1 J	<0.49 J	<0.64 J	<0.55	<0.55	<1.6	<0.39	<0.38	1.7 J	16 J	0.58 J	0.22 J [0.12 J]	0.28 J	<1.6 J	0.086 J	<0.38
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.56 J	NA	0.26 J	NA	NA	NA
Diethylphthalate		NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA NA	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA
Fluoranthene	1,000	37	1.0	0.54 J	0.036 J	<0.55	<1.6	0.0080 J	<0.38	5.5	740	23	4.8 J [2.1 J]	9.6	<1.6	0.28 J	0.029 J
Fluorene	1,000	2.1 J	0.33 J	0.21 J	0.18 J	0.42 J	<1.6	<0.39	<0.38	3.0	360	11	4.5 J [2.7 J]	5.5	<1.6	0.16 J	<0.38
Indeno(1,2,3-cd)pyrene	11	2.5 J	0.098 J	0.074 J	<0.55	<0.55	<1.6 J	<0.39	<0.38	0.58 J	41 J	1.4 J	0.62 J [0.36 J]	0.73 J	<1.6 J	0.047 J	<0.38
Naphthalene	1,000	<0.22	0.42 JB	0.85 B	0.65 B	2.5 B	8.6 B	2.5 B	0.31 JB	0.25 J	66 J	0.31 J	7.6 J [14 J]	8.5	8.2	2.5	0.042 J
Phenanthrene	1,000	29	0.46 J	0.28 J	0.094 J	< 0.55	<1.6	0.013 J	<0.38	9.8	1,100	28	11 J [5.1 J]	16	0.032 J	0.44	0.034 J
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	36	0.96	0.57 J	0.041 J	<0.55	<1.6	0.011 J	<0.38	5.5	570	19	3.8 J [1.5 J]	6.9	<1.6	0.18 J	0.018 J
Total PAHs		240 J	8.7 J	6.3 J	2.6 J	6.2 J	8.6	2.6 J	0.32 J	54 J	5,500 J	160 J	56 J [40 J]	81 J	8.3 J	4.7 J	0.19 J
Total SVOCs		240 J	8.7 J	6.3 J	2.6 J	6.2 J	8.6	2.6 J	0.32 J	54 J	5,500 J	160 J	56 J [40 J]	81 J	8.3 J	4.7 J	0.19 J

Location ID:	6 NYCRR PART 375				SE	3-20							SB-21				
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/22/00	8 - 10 02/22/00	10 - 12 02/22/00	14 - 16 02/22/00	20 - 22 02/22/00	28 - 30 02/22/00	38 - 40 02/22/00	48 - 50 02/22/00	2 - 4 02/21/00	6 - 8 02/21/00	10 - 12 02/21/00	14 - 16 02/21/00	20 - 22 02/21/00	28 - 30 02/21/00	38 - 40 02/21/00	48 - 50 02/21/00
Soil Removed at Sa	mple I ocation:									Х	х	Х	Х				
Soil Stabilized at San																	
Detected Pesticides	iipie Location .	l	1		l .		l .			l							
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA
4.4'-DDT	94	NA.	NA.	NA NA	NA NA	NA	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA NA
Aldrin	1.4	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.	NA NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics	ı.													l l	l l		
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	<0.590 J	<0.680 J	<0.820 J	<0.650 J	<1.67 J	<0.620 J	<0.600 J	<0.630 J	19.7 J	60.9 J	31.4 J	10.4 J [2.57 J]	<0.930 J	<0.630 J	<1.37 J	<0.700 J
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Date Collected: Use SCOS 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 02/29/00 02/2	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Date Collected: Use SCOs 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 03/06/00 02/29/00 02/2	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Detected PCBs	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Detected PCBs	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Detected PCBs	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Arcolor-1248	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Arcolor-1248	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Arcolor-1260	NA NA NA NA <0.0050 NA NA <0.0050 NA <0.33 NA NA O.00060 J
Total PCBs	NA NA NA <0.0050 NA NA <0.0050 NA NA <0.0050 NA NA <0.0050 NA O.00060 NA NA NA NA NA NA NA NA NA N
Detected VOCs 2-Butanone	NA NA <0.0050 NA NA <0.0050 NA <0.33 NA NA NA 0.00060 J
2-Butanone	NA <0.0050 NA NA NA <0.0050 NA <0.33 NA NA NA 0.00060 J
Acetone	NA <0.0050 NA NA NA <0.0050 NA <0.33 NA NA NA 0.00060 J
Benzene	<0.0050 NA NA NA <0.0050 NA <0.33 NA NA NA 0.00060 J
Carbon Disulfide	NA NA NA <0.0050 NA <0.33 NA NA 0.00060 J
Chlorobenzene	NA NA <0.0050 NA <0.33 NA NA O.00060 J
Chloroform	NA <0.0050 NA <0.33 NA NA O.00060 J
Ethylbenzene 780 NA NA NA 0.0060 J 0.0020 J 0.0070	<0.0050 NA <0.33 NA NA O.00060 J
Methylene Chloride	NA <0.33 NA NA NA 0.00060 J
Naphthalene	<0.33 NA NA 0.00060 J
Styrene	NA NA 0.00060 J
Tetrachloroethene 300 NA	NA 0.00060 J
Toluene 1,000 NA NA 0.024 0.0090 0.039 0.00040 J <0.0060 0.0070 J 0.0020 J (0.0050 J) 0.0060 J 0.0020 J 0.23 0.0010 J 0.0060 Sylenes (total) 1,000 NA NA 0.066 0.022 0.080 0.00040 J <0.0060 0.0010 J 0.0050 J (0.014 J) 0.0080 0.0050 J 0.028 <0.0070 C Total PTEX NA NA 0.11 J 0.036 J 0.15 0.0098 J 0.00070 J 0.017 J 0.023 J (0.042 J) 0.019 J 0.010 J 0.42 J 0.0080 J 0.0060 C C C C C C C C C C C C C C C C C C	0.00060 J
Xylenes (total)	
Total BTEX NA NA 0.11 J 0.036 J 0.15 0.0098 J 0.0070 J 0.017 J 0.023 J [0.042 J] 0.019 J 0.010 J 0.42 J 0.0080 J 0.010 J 0.	0.00040 J
Total VOCs NA NA 0.11 J 0.036 J 0.15 0.0098 J 0.00070 J 0.017 J 0.023 J 0.042 J 0.019 J 0.010 J 0.42 J 0.0080 J 0 Detected SVOCs 2,4-Dimethylphenol NA	0.0010 J
Detected SVOCs 2,4-Dimethylphenol NA NA </td <td>0.0010 J</td>	0.0010 J
2,4-Dimethylphenol NA	5.00100
2-Chloronaphthalene NA	NA
	NA
2-Methylnaphthalene NA NA NA NA NA NA SOURCE STATE	<0.33
2-Methylphenol 1,000 NA	NA
3,3'-Dichlorobenzidine NA	NA
4-Methylphenol 1,000 NA	NA
4-Nitroaniline NA	NA
Acenaphthene 1,000 NA NA NA NA NA NA NA < <0.33 < <0.38 0.16 J <0.82 [0.89 J] 0.017 J <0.50 < <0.78 < <0.41	<0.33
Acenaphthylene 1,000 NA NA NA NA NA NA 0.0070 J 0.0040 J 0.054 J <0.82 [0.018 J] 0.050 J <0.50 <0.78 <0.41	< 0.33
Anthracene 1,000 NA NA NA NA NA NA 0.018 J 0.0080 J 0.42 <0.82 [0.026 J] 0.10 J 0.0040 J <0.78 <0.41	<0.33
Benzo(a)anthracene 11 NA NA NA NA NA 0.041 J 0.033 J 1.4 0.018 J [0.12 J] 0.17 J 0.0080 J <0.78 <0.41	< 0.33
Benzo(a)pyrene 1.1 NA NA NA NA NA 0.030 J 0.024 J 1.5 <0.82 [0.89 J] 0.12 J <0.50 <0.78 <0.41	<0.33
Benzo(b)fluoranthene 11 NA NA NA NA NA NA 0.023 J 0.025 J 1.7 <0.82 [0.044 J] 0.087 J <0.50 <0.78 <0.41	<0.33
Benzo(g,h,i)perylene 1,000 NA NA NA NA NA 0.016 J 0.0080 J 0.32 J <0.82 [0.89 J] <0.50 <0.50 <0.78 <0.41	<0.33
Benzo(k)fluoranthene 110 NA NA NA NA NA NA 0.040 J 0.026 J 1.6 <0.82 [0.052 J] 0.10 J <0.50 <0.78 <0.41	<0.33
bis(2-Ethylhexyl)phthalate NA	NA NA
Butylbenzylphthalate NA	NA NA
	<0.33
Chrysene 110 NA NA NA NA NA NA O.034 J O.033 J 1.6 O.017 J [0.15 J] O.17 J O.080 J <0.78 <0.41 Dibenzo(a,h)anthracene 1.1 NA NA NA NA NA O.0040 J 0.12 J <0.82 [0.89 J]	<0.33
Chiderizofuran 1,000 NA	NA
	NA NA
Cristryprintalizate	NA
NA NA NA NA NA NA 0.093 J 0.064 J 2.0 0.23 J 0.92 J J 0.41 J 0.021 J 4.78 4.041	<0.33
Fluorene 1,000 NA NA NA NA NA NA NA NA NA C<.33 0.0030 J 0.14 J <0.25 (2.0.89 J) 0.044 J <0.50 <0.78 <0.41	<0.33
Indeno(1,2,3-cd)pyrene 111 NA NA NA NA NA 0.018 J 0.0090 J 0.36 <0.82 [0.89 J] 0.022 J <0.50 <0.78 <0.41	<0.33
Naphthalene 1,000 NA NA NA NA NA 0.27 J 0.039 J 0.13 J <0.82 [0.047 J] 0.26 J 0.45 J <0.78 <0.41	<0.33
Phenanthrene 1,000 NA NA NA NA NA 0.022 J 0.014 J 1.4 0.029 J [0.080 J] 0.37 J 0.014 J <0.78 <0.41	<0.33
Phenol 1,000 NA	NA
Pyrene 1,000 NA NA NA NA NA NA 0.050 J 0.052 J 1.8 0.12 J[1.1 J] 0.38 J 0.016 J <0.78 <0.41	< 0.33
Total PAHs NA NA NA NA NA NA 0.66 J 0.35 J 15 J 0.41 J [8.8 J] 2.5 J 0.56 J <0.78 <0.41	< 0.33
Total SVOCs NA NA NA NA NA NA 0.66 J 0.35 J 15 J 0.41 J [8.8 J] 2.5 J 0.56 J <0.78 <0.41	

	6 NYCRR														
Location ID:	PART 375				SB-22						SI	3-23			
Sample Depth(Feet):	Industrial	2 - 4	6 - 8	10 - 12	20 - 22	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	20 - 22	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/06/00	03/06/00	03/06/00	03/06/00	03/06/00	03/06/00	03/06/00	02/29/00	02/29/00	02/29/00	02/29/00	02/29/00	02/29/00	02/29/00
Soil Removed at Sar	mple Location:	Х	Х	Х					Х	X	Х				
Soil Stabilized at San	nple Location:														1
Detected Pesticides															
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Endosulfan II Endosulfan Sulfate	920 920	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate Endrin	920 410	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Ketone		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor	29	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics		1471	1471	1471	1473	1471	1471	1471	100	14/1	1471	1471	1471	14/1	
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA	NA	NA	NA.
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	11.1	46.8 [19.1]	4.33	1.63	0.590	0.630	<1.20	<1.07 J	78.8 J [122 J]	<1.36 J	<0.740 J	<0.620 J	<0.680 J	0.610
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Mercury	5.7	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA
Nickel	10,000	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Potassium	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium Silver	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium	6,600	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	.0,000									100 (
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Ignitability		NA NA	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA NA
pH		NA NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA NA	NA.	NA	NA	NA	NA NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	•	•		•							•				

	6 NYCRR																
Location ID:	PART 375					-24								SB-25			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/20/00	6 - 8 03/20/00	10 - 12 03/20/00	14 - 16 03/20/00	20 - 22 03/20/00	28 - 30 03/20/00	38 - 40 03/20/00	48 - 50 03/20/00	2 - 4 03/17/00	6 - 8 03/17/00	10 - 12 03/17/00	14 - 16 03/17/00	20 - 22 03/17/00	28 - 30 03/17/00	38 - 40 03/17/00	48 - 50 03/17/00
Soil Removed at San																	
Soil Stabilized at Sam																	
Detected PCBs	ipic Location .					l	1	l .	1				1	ı	1	l .	l .
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																	
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	0.0018 J	<0.011	<0.0089	<0.0071	0.0040 J	0.051	0.041	0.0097	<0.0061	<0.0062	0.010	0.0020 J	0.026 [0.014]	0.098	0.0083	< 0.0057
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Chloroform	700 780	NA -0.0050	NA -0.011	NA -0.0000	NA -0.0074	NA 0.0053 J	NA -0.000E	NA <0.0060	NA -0.0067	NA -0.0061	NA -0.0062	NA 0.0000	NA 0.014	NA 0.0000 Lf0.0044 II	NA <0.0060	NA -0.0063	NA -0.0057
Ethylbenzene Methylene Chloride	1,000	<0.0059 NA	<0.011 NA	<0.0089 NA	<0.0071 NA	0.0053 J NA	<0.0065 NA	<0.0060 NA	<0.0067 NA	<0.0061 NA	<0.0062 NA	0.0090 NA	0.014 NA	0.0060 J [0.0044 J]	<0.0060 NA	<0.0063 NA	<0.0057 NA
Naphthalene	1,000	0.33 J	<0.73	0.063 J	0.24 J	0.82	<0.41	<0.40	0.021 J	0.60	0.39	0.028 J	0.15 J	NA 0.21 J [0.34]	<0.43	<0.41	<0.40
Styrene		NA	NA	0.003 J	0.24 J	NA	NA	NA	NA	NA	NA	NA	NA	0.213 [0.34] NA	NA	NA	NA
Tetrachloroethene	300	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1,000	0.014	<0.011	0.0028 J	<0.0071	0.0089	0.022	0.0026 J	<0.0067	0.0014 J	<0.0062	<0.0081	0.0033 J	0.036 [0.026]	0.0027 J	<0.0063	<0.0057
Xylenes (total)	1,000	<0.0059	<0.011	<0.0089	0.0019 J	0.084	<0.0065	<0.0060	<0.0067	<0.0061	< 0.0062	0.0030 J	0.082	0.093 [0.072]	<0.0060	< 0.0063	< 0.0057
Total BTEX		0.016 J	<0.011	0.0028 J	0.0019 J	0.10 J	0.073	0.044 J	0.0097	0.0014 J	< 0.0062	0.022 J	0.10 J	0.16 J [0.12 J]	0.10 J	0.0083	< 0.0057
Total VOCs		0.016 J	< 0.011	0.0028 J	0.0019 J	0.10 J	0.073	0.044 J	0.0097	0.0014 J	< 0.0062	0.022 J	0.10 J	0.16 J [0.12 J]	0.10 J	0.0083	< 0.0057
Detected SVOCs										•	•	•					•
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.23 J	< 0.73	0.043 J	0.16 J	0.065 J	<0.41	< 0.40	< 0.40	0.95	0.27 J	< 0.53	0.037 J	<0.54 [0.0077 J]	< 0.43	< 0.41	< 0.40
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA .	NA 0.70	NA	NA 0.5.4	NA 0.40	NA	NA 0.40	NA	NA 0.057 I	NA	NA 0.50	NA 0.40	NA 0.51/.0.57	NA	NA	NA
Acenaphthene Acenaphthylene	1,000 1,000	0.42 J 0.040 J	<0.73 <0.73	<0.80 <0.80	<0.54 <0.54	<0.48 <0.48	<0.41 <0.41	<0.40 <0.40	<0.40 <0.40	0.057 J 0.017 J	<0.39 0.062 J	<0.53 <0.53	<0.49 <0.49	<0.54 [<0.57] <0.54 [<0.57]	<0.43 <0.43	<0.41 <0.41	<0.40 <0.40
Anthracene	1,000	0.040 3	<0.73	<0.80	<0.54	<0.48	<0.41	<0.40	<0.40	0.017 J	0.062 J	<0.53	<0.49	<0.54 [<0.57]	<0.43	<0.41	<0.40
Benzo(a)anthracene	11	2.5	<0.73	0.055 J	<0.54	<0.48	<0.41	<0.40	<0.40	0.20 3	0.20 3	<0.53	0.033 J	<0.54 [<0.57]	<0.43	<0.41	<0.40
Benzo(a)pyrene	1.1	2.2	<0.73	0.033 J	<0.54	<0.48	<0.41	<0.40	<0.40	0.74	0.39	<0.53	0.030 J	<0.54 [<0.57]	<0.43	<0.41	<0.40
Benzo(b)fluoranthene	11	1.8	<0.73	0.042 J	<0.54	<0.48	<0.41	<0.40	<0.40	0.54	0.63	<0.53	0.026 J	<0.54 [<0.57]	<0.43	<0.41	<0.40
Benzo(g,h,i)perylene	1,000	1.2	<0.73	<0.80	<0.54	<0.48	<0.41	<0.40	<0.40	0.28 J	0.30 J	< 0.53	<0.49	<0.54 [<0.57]	<0.43	<0.41	<0.40
Benzo(k)fluoranthene	110	2.5	<0.73	0.052 J	<0.54	<0.48	<0.41	<0.40	< 0.40	0.77	0.76	< 0.53	0.028 J	<0.54 [<0.57]	< 0.43	<0.41	<0.40
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	2.4	< 0.73	0.087 J	< 0.54	<0.48	<0.41	< 0.40	< 0.40	0.80	0.77	< 0.53	0.033 J	<0.54 [<0.57]	< 0.43	< 0.41	< 0.40
Dibenzo(a,h)anthracene	1.1	0.52 J	< 0.73	<0.80	< 0.54	<0.48	<0.41	< 0.40	< 0.40	0.13 J	0.16 J	< 0.53	< 0.49	<0.54 [<0.57]	< 0.43	<0.41	< 0.40
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA 0.70	NA .	NA 0.5.4	NA 0.40	NA	NA 0.40	NA	NA	NA	NA 0.50	NA .	NA 0.51/.0.57	NA	NA	NA 0.40
Fluoranthene	1,000	4.3	<0.73	0.12 J	<0.54	<0.48	<0.41	<0.40	<0.40	1.5	1.0	<0.53	0.044 J	<0.54 [<0.57]	<0.43	<0.41	<0.40
Fluorene Indeno(1,2,3-cd)pyrene	1,000 11	0.42 J 1.2	<0.73	<0.80	<0.54 <0.54	<0.48	<0.41	<0.40 <0.40	<0.40 <0.40	0.11 J 0.30 J	0.076 J 0.32 J	0.026 J <0.53	0.066 J <0.49	<0.54 [<0.57] <0.54 [<0.57]	<0.43	<0.41 <0.41	<0.40 <0.40
Naphthalene	1.000	0.33 J	<0.73	<0.80 0.063 J	<0.54 0.24 J	0.82	<0.41	<0.40	0.021 J	0.30 J	0.32 J 0.39	<0.53 0.028 J	0.49 0.15 J	0.54 [<0.57]	<0.43	<0.41	<0.40
Phenanthrene	1,000	3.6	<0.73	0.063 J	0.24 J 0.041 J	<0.48	<0.41	<0.40	<0.40	0.60	0.80	< 0.53	< 0.49	<0.54 [<0.57]	<0.43	<0.41	<0.40
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	4.6	<0.73	0.085 J	<0.54	<0.48	<0.41	<0.40	<0.40	1.4	1.1	<0.53	0.048 J	<0.54 [<0.57]	<0.43	<0.41	<0.40
Total PAHs		29 J	<0.73	0.76 J	0.44 J	0.89 J	<0.41	<0.40	0.021 J	9.9 J	7.8 J	0.054 J	0.50 J	0.21 J [0.35 J]	<0.43	<0.41	<0.40
Total SVOCs		29 J	< 0.73	0.76 J	0.44 J	0.89 J	<0.41	<0.40	0.021 J	9.9 J	7.8 J	0.054 J	0.50 J	0.21 J [0.35 J]	< 0.43	<0.41	<0.40

Location ID:	6 NYCRR PART 375					I-24								SB-25			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/20/00	6 - 8 03/20/00	10 - 12 03/20/00	14 - 16 03/20/00	20 - 22 03/20/00	28 - 30 03/20/00	38 - 40 03/20/00	48 - 50 03/20/00	2 - 4 03/17/00	6 - 8 03/17/00	10 - 12 03/17/00	14 - 16 03/17/00	20 - 22 03/17/00	28 - 30 03/17/00	38 - 40 03/17/00	48 - 50 03/17/00
Soil Removed at Sa																	
Soil Stabilized at Sar																	
Detected Pesticides	iipie Location .		l .			l	1	l	l .	l	l	l		l			
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA NA	NA NA	NA.	NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	NA
4,4'-DDT	94	NA NA	NA	NA.	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA.	NA NA	NA	NA.	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																	
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	11.6	15.1	75.4	<0.800	<0.690	<0.510	<0.540	<0.560	35.1	23.1	6.50	5.10	<0.790 [<0.780]	< 0.630	<0.580	<0.550
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Sodium		NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Thallium Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium Zinc	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
	1	I NIA	NIA.	NIA	NIA	NIA.	NIA.	NIA.	NIA.	NIA.	NIA.	NIA.	NIA	N/A	I NIA	NIA	NIA
Diesel Range Organics [C10-C28]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Gasoline Range Organics [C6-C10]											NA NA					NA NA	
Ignitability pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
								NA NA	NA NA								
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	6 NYCRR															
Location ID:	PART 375				SB-26			40 50					3-27			10.50
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 02/24/00	6 - 8 02/24/00	10 - 12 02/24/00	20 - 22 02/24/00	28 - 30 02/24/00	38 - 40 02/24/00	48 - 50 02/24/00	2 - 4 03/02/00	6 - 8 03/02/00	10 - 12 03/02/00	14 - 16 03/02/00	20 - 22 03/02/00	28 - 30 03/02/00	38 - 40 03/02/00	48 - 50 03/02/00
Soil Removed at Sar	nple Location:								Х	Х	Х	Х				
Soil Stabilized at Sam	nle Location :															
Detected PCBs	ipio zoodiloii i															
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	< 0.012	< 0.014	0.00050 J	0.13	<0.0060	0.00080 J	0.0060	<0.010 J	<0.010 J	0.022 J	0.0020 J	0.029	0.0090	0.0010 J	0.067
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene Mathida a Ohlasida	780	<0.012	<0.014	0.0050 J	0.38	0.0070	0.00070 J	0.00050 J	<0.010 J	<0.010 J	0.0040 J	0.00080 J	0.023	0.0090	0.0010 J	0.00080 J
Methylene Chloride	1,000	NA 0.05	NA 0.00	NA 0.040 J	NA 0.044 I	NA 3.0	NA 0.40 l	NA 0.030 J	NA 0.0050 J	NA 0.054 I	NA 0.0.1	NA	NA 0.0	NA 4.0	NA 4.0	NA 0.40 L
Naphthalene Styrene	1,000	<0.65 NA	<0.92 NA	0.010 J NA	0.014 J NA	NA	0.16 J NA	0.030 J NA	0.0050 J NA	0.054 J NA	2.6 J NA	1.1 NA	6.9 NA	4.2 NA	1.3 NA	0.13 J NA
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1,000	0.00050 J	0.00070 J	0.0040 J	0.55	0.0080	0.0010 J	0.00070 J	<0.010 J	<0.010 J	0.044 J	0.0070	0.053	0.012	0.00060 J	0.00070 J
Xylenes (total)	1,000	<0.012	< 0.014	0.0040 J	2.3	0.0080	0.0010 J	0.00070 J	<0.010 J	<0.010 J	0.052 J	0.0070	0.033	0.012	0.00000 J	0.00070 J
Total BTEX		0.00050 J	0.00070 J	0.034 J	3.4	0.053	0.0036 J	0.0030 J	<0.0103	<0.0103	0.032 J	0.015 0.025 J	0.45	0.030	0.0016 J	0.0010 J
Total VOCs		0.00050 J	0.00070 J	0.044 J	3.4	0.053	0.0075 J	0.010 J	<0.010	<0.010	0.12 J	0.025 J	0.45	0.13	0.0036 J	0.070 J
Detected SVOCs		0.00000	0.000700	0.044 0	0.4	0.000	0.00700	0.0100	40.010	40.010	0.12.0	0.020 0	0.40	0.10	0.0000 0	0.0700
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
2-Methylnaphthalene		<0.65	<0.92	0.012 J	0.0080 J	1.6	0.017 J	0.0050 J	<0.73 J	0.050 J	2.6 J	0.56	2.2	0.27 J	0.016 J	0.017 J
2-Methylphenol	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	< 0.65	< 0.92	0.82 J	0.0030 J	0.082 J	<0.38	< 0.39	<0.73 J	0.018 J	0.26 J	0.050 J	0.11 J	0.0090 J	0.0020 J	< 0.40
Acenaphthylene	1,000	< 0.65	0.018 J	0.82 J	0.0090 J	0.21 J	0.0030 J	< 0.39	<0.73 J	0.26 J	1.0 J	0.28 J	1.0	0.084 J	0.011 J	0.0070 J
Anthracene	1,000	< 0.65	0.039 J	0.0040 J	0.016 J	< 0.39	0.0010 J	< 0.39	<0.73 J	0.32 J	0.52 J	0.035 J	<1.0	<0.80	0.013 J	0.010 J
Benzo(a)anthracene	11	0.046 J	0.18 J	0.026 J	0.023 J	< 0.39	0.0040 J	< 0.39	0.0060 J	0.99 J	0.35 J	<0.44	<1.0	<0.80	0.010 J	0.012 J
Benzo(a)pyrene	1.1	0.059 J	0.19 J	0.016 J	0.016 J	< 0.39	0.0040 J	<0.39	0.0090 J	0.98 J	0.31 J	<0.44	<1.0	<0.80	0.0090 J	0.0090 J
Benzo(b)fluoranthene	11	0.044 J	0.16 J	0.030 J	0.012 J	< 0.39	0.0050 J	<0.39	0.010 J	0.81 J	0.28 J	<0.44	<1.0	<0.80	0.0080 J	0.0090 J
Benzo(g,h,i)perylene	1,000	0.048 J	0.14 J	0.014 J	0.0060 J	< 0.39	0.0030 J	<0.39	0.0070 J	0.94 J	0.23 J	<0.44	<1.0	<0.80	0.0040 J	0.0040 J
Benzo(k)fluoranthene	110	0.054 J	0.21 J	0.022 J	0.021 J	<0.39	0.0040 J	<0.39	0.010 J	1.1 J	0.27 J	<0.44	<1.0	<0.80	0.0090 J	0.010 J
bis(2-Ethylhexyl)phthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Butylbenzylphthalate Carbazole		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	110	0.042 J	0.16 J	0.047 J	0.020 J	0.0080 J	0.0060 J	0.0020 J	0.011 J	1.0 J	0.34 J	<0.44	<1.0	0.0040 J	0.010 J	0.013 J
Chrysene Dibenzo(a,h)anthracene	1.1	<0.65	0.16 J 0.055 J	0.047 J 0.82 J	<0.39	<0.39	<0.38	<0.39	<0.73 J	0.30 J	0.34 J 0.067 J	<0.44	<1.0	<0.80	<0.39	0.013 J 0.0020 J
Dibenzofuran	1.000	<0.65 NA	0.055 J NA	0.82 J NA	<0.39 NA	<0.39 NA	<0.36 NA	<0.39 NA	<0.73 J NA	NA	0.067 J	<0.44 NA	NA	<0.60 NA	<0.39 NA	0.0020 J
Diethylphthalate	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	1,000	0.047 J	0.24 J	0.052 J	0.050 J	0.0020 J	0.0060 J	0.0020 J	0.0050 J	1.4	0.70 J	0.011 J	<1.0	0.0050 J	0.023 J	0.025 J
Fluorene	1,000	< 0.65	<0.92	0.82 J	0.000 J	0.0020 J	<0.38	<0.39	<0.73 J	0.035 J	0.75 J	0.19 J	0.23 J	0.013 J	0.025 J	0.0070 J
Indeno(1,2,3-cd)pyrene	11	0.045 J	0.15 J	0.013 J	0.0070 J	<0.39	0.0020 J	<0.39	0.0070 J	0.84 J	0.20 J	<0.44	<1.0	<0.80	0.0040 J	0.0040 J
Naphthalene	1,000	< 0.65	<0.92	0.010 J	0.014 J	3.0	0.16 J	0.030 J	0.0050 J	0.054 J	2.6 J	1.1	6.9	4.2	1.3	0.13 J
Phenanthrene	1,000	0.015 J	0.13 J	0.056 J	0.045 J	0.010 J	0.0060 J	0.0020 J	0.0040 J	0.46 J	2.9 J	0.18 J	0.0060 J	0.012 J	0.035 J	0.032 J
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	0.063 J	0.27 J	0.056 J	0.039 J	0.0050 J	0.0070 J	0.0030 J	0.0050 J	1.6	0.59 J	0.0070 J	<1.0	0.0070 J	0.016 J	0.022 J
Total PAHs		0.46 J	1.9 J	3.6 J	0.30 J	4.9 J	0.23 J	0.044 J	0.079 J	11 J	14 J	2.4 J	10 J	4.6 J	1.5 J	0.31 J
Total SVOCs		0.46 J	1.9 J	3.6 J	0.30 J	4.9 J	0.23 J	0.044 J	0.079 J	11 J	14 J	2.4 J	10 J	4.6 J	1.5 J	0.31 J

Location ID:	6 NYCRR PART 375				SB-26							Q.F.	3-27			
Sample Depth(Feet):	Industrial	2 - 4	6 - 8	10 - 12	20 - 22	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50
Date Collected:		02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	02/24/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00	03/02/00
Soil Removed at San	nple Location:								Х	Х	Х	Х				
Soil Stabilized at Sam	ple Location :															
Detected Pesticides												U U				-
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA 0.00 l	NA 05.0.1	NA 40.0 l	NA 4.40	NA 1.40	NA 0.570 I	NA 0.000 I	NA .	NA 5.05.1	NA OF 0 1	NA O 000 I	NA 0.000	NA 0.500	NA 0.000	NA 0.040
Cyanide	10,000	<2.30 J	25.9 J	13.9 J	1.40 NA	1.12	<0.570 J	<0.600 J	1.45 J	5.95 J	65.9 J	<0.680 J	<0.820	<0.590	<0.600	<0.610
Iron	3.900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lead Magnesium	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese Mercury	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA
Detected Miscellaneous																
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA
Ignitability		NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA.	NA NA	NA.	NA NA	NA.	NA NA
pH		NA.	NA.	NA.	NA	NA NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.
Total Sulfur		NA.	NA.	NA.	NA	NA NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.

	6 NYCRR					<u> </u>								
Location ID:	PART 375				SB-28						SB-29			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/01/00	6 - 8 03/01/00	10 - 12 03/01/00	20 - 22 03/01/00	28 - 30 03/01/00	38 - 40 03/01/00	48 - 50 03/01/00	6 - 8 03/01/00	10 - 12 03/01/00	14 - 16 03/01/00	20 - 22 03/01/00	38 - 40 03/01/00	48 - 50 03/01/00
Soil Removed at Sar		X	Х	X				00.01.00	X	X	X			00,01100
Soil Stabilized at San														
Detected PCBs	ipie Location .								l		l			
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Aroclor-1248		NA NA	NA	NA	NA.	NA	NA.	NA NA	NA NA	NA NA	NA	NA.	NA.	NA NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs														
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	0.00050 J	0.0020 J	0.00090 J	0.0010 J	0.11	0.093	0.00060 J	<0.0050	0.00040 J [<0.0050]	0.00050 J	< 0.0050	0.0020 J	<0.0050
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Chloroform	700	NA -0.0050	NA -0.0050	NA 0.00000 I	NA 0.0010 L	NA 0.0010 I	NA 0.064	NA 0.00060 I	NA -0.00E0	NA	NA -0.00E0	NA -0.00E0	NA -0.00E0	NA -0.00E0
Ethylbenzene Methylene Chloride	780 1.000	<0.0050 NA	<0.0050 NA	0.00090 J NA	0.0010 J NA	0.0010 J NA	0.061 NA	0.00060 J NA	<0.0050 NA	<0.0050 [<0.0050] NA	<0.0050 NA	<0.0050 NA	<0.0050 NA	<0.0050 NA
Naphthalene	1,000	0.37 J	0.60 J	4.7	2.8	0.25 J	2.0	<0.33	0.038 J	0.74 [0.35 J]	0.088 J	1.2	0.024 J	<0.33
Styrene	1,000	NA	0.60 J	NA	NA	0.25 J	NA	NA	0.036 J	0.74 [0.35 J] NA	0.066 J	NA	0.024 J	NA
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1,000	0.00040 J	0.0020 J	0.0020 J	0.0020 J	0.14	0.099	0.00090 J	0.00070 J	0.00080 J [0.00070 J]	0.00080 J	0.00040 J	0.00040 J	0.00040 J
Xylenes (total)	1,000	<0.0050	0.00060 J	0.010	0.015	0.026	0.16	0.0020 J	<0.0050	0.00090 J [0.00070 J]	< 0.0050	0.0010 J	0.00060 J	<0.0050
Total BTEX		0.00090 J	0.0046 J	0.014 J	0.019 J	0.28 J	0.41	0.0041 J	0.00070 J	0.0021 J [0.0014 J]	0.0013 J	0.0014 J	0.0030 J	0.00040 J
Total VOCs		0.00090 J	0.0046 J	0.014 J	0.019 J	0.28 J	0.41	0.0041 J	0.00070 J	0.0021 J [0.0014 J]	0.0013 J	0.0014 J	0.0030 J	0.00040 J
Detected SVOCs								•	•					
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.29 J	1.2 J	2.3	2.3	0.0090 J	0.016 J	< 0.33	0.062 J	0.34 J [0.16 J]	0.21 J	0.55	< 0.33	< 0.33
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA .	NA	NA .	NA .	NA	NA	NA	NA	NA	NA	NA a see t	NA	NA
Acenaphthene	1,000 1,000	0.23 J	6.0 J	0.16 J 1.1	0.19 J	<0.33	<0.33 <0.33	<0.33 <0.33	<0.33 0.013 J	0.015 J [<0.33] 0.091 J [0.043 J]	0.018 J 0.034 J	0.023 J 0.065 J	<0.33 <0.33	<0.33
Acenaphthylene Anthracene	1,000	1.3 J 4.2	6.4 J 24	0.42 J	1.1 0.049 J	<0.33	0.0090 J	<0.33	0.013 J 0.036 J	0.091 J [0.043 J] 0.027 J [0.082 J]	0.034 J 0.035 J	0.065 J 0.018 J	<0.33	<0.33 <0.33
Benzo(a)anthracene	1,000	12	38	1.9	<0.33	<0.33	0.0090 J	<0.33	0.036 J	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33
Benzo(a)pyrene	1.1	11	34	1.9	<0.33	<0.33	0.057 J	<0.33	<0.33	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33
Benzo(b)fluoranthene	11	14	40	1.8	<0.33	<0.33	0.053 J	<0.33	<0.33	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33
Benzo(g,h,i)perylene	1.000	1.0 J	3.5 J	0.21 J	<0.33	<0.33	0.023 J	<0.33	<0.33	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33
Benzo(k)fluoranthene	110	21	54	2.4	< 0.33	< 0.33	0.069 J	<0.33	< 0.33	<0.33 [<0.33]	<0.33	<0.33	<0.33	<0.33
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	11	39	2.0	< 0.33	< 0.33	0.061 J	< 0.33	0.072 J	<0.33 [<0.33]	< 0.33	< 0.33	< 0.33	< 0.33
Dibenzo(a,h)anthracene	1.1	0.55 J	2.1 J	0.097 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33 [<0.33]	< 0.33	< 0.33	< 0.33	< 0.33
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	17	62	2.3	0.011 J	<0.33	0.050 J	<0.33	0.077 J	0.021 J [0.058 J]	<0.33	<0.33	<0.33	<0.33
Fluorene	1,000	1.2 J	11	0.68 J	0.89	<0.33	< 0.33	<0.33	<0.33	0.097 J [0.055 J]	0.14 J	0.073 J	<0.33	<0.33
Indeno(1,2,3-cd)pyrene	11	1.3 J	4.3 J	0.26 J	<0.33	<0.33	0.026 J	<0.33	<0.33	<0.33 [<0.33]	<0.33	<0.33	<0.33 0.024 J	<0.33
Naphthalene	1,000 1,000	0.37 J 9.9	0.60 J 59	4.7 1.1	2.8 0.17 J	0.25 J <0.33	2.0 0.029 J	<0.33 <0.33	0.038 J 0.52 J	0.74 [0.35 J] 0.028 J [0.28 J]	0.088 J 0.16 J	1.2 0.056 J	0.024 J <0.33	<0.33
Phenanthrene Phenol	1,000	9.9 NA	NA	1.1 NA	0.17 J NA	<0.33 NA	0.029 J NA	<0.33 NA	0.52 J NA	0.028 J [0.28 J] NA	0.16 J NA	0.056 J NA	<0.33 NA	<0.33 NA
Pyrene	1,000	13	48	2.3	0.010 J	<0.33	0.053 J	<0.33	0.071 J	<0.33 [0.040 J]	<0.33	<0.33	<0.33	<0.33
Total PAHs	1,000	120 J	430 J	26 J	7.5 J	0.26 J	2.5 J	<0.33	0.0713 0.92 J	1.4 J [1.1 J]	0.69 J	2.0 J	0.024 J	<0.33
Total SVOCs		120 J	430 J	26 J	7.5 J	0.26 J	2.5 J	<0.33	0.92 J	1.4 J [1.1 J]	0.69 J	2.0 J	0.024 J	<0.33
		1200	400 0	200	7.00	0.200	2.00	₹0.00	0.02.0	1.70[1.10]	0.000	2.00	0.02-7 0	٦٥.٥٥

Location ID:	6 NYCRR PART 375				SB-28						SB-29			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/01/00	6 - 8 03/01/00	10 - 12 03/01/00	20 - 22 03/01/00	28 - 30 03/01/00	38 - 40 03/01/00	48 - 50 03/01/00	6 - 8 03/01/00	10 - 12 03/01/00	14 - 16 03/01/00	20 - 22 03/01/00	38 - 40 03/01/00	48 - 50 03/01/00
Soil Removed at Sa		Х	х	х					х	Х	х			
Soil Stabilized at San	nnle I ocation ·													
Detected Pesticides	p.io 200atioii i													
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics														
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA 0.700	NA	NA	NA	NA	NA TOO TO TOO!	NA	NA 0.700	NA	NA 0.050
Cyanide	10,000	0.630	0.940	0.830	0.790	0.640	0.560	0.590	71.3	0.730 [0.720]	0.640	0.790	0.670	0.650
Iron	3,900	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lead Magnesium	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium	0,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA.
Detected Miscellaneous	10,000				1						1			
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Location ID:	6 NYCRR PART 375				SB-30								SB-31			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/13/00	6 - 8 03/13/00	10 - 12 03/13/00	20 - 22 03/13/00	24 03/13/00	28 - 30 03/13/00	38 - 40 03/13/00	48 - 50 03/13/00	2 - 4 03/07/00	6 - 8 03/07/00	14 - 16 03/07/00	20 - 22 03/07/00	28 - 30 03/07/00	38 - 40 03/07/00	48 - 50 03/07/00
Soil Removed at San	nple Location:															
Soil Stabilized at Sam																
Detected PCBs	pie zecanon i				ı											
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	NA	<0.012 J	0.0048 J	<0.0071 J [<0.012 J]	< 0.0079	0.0021 J	<0.0058	< 0.0059	0.00050 J	0.0040 J	0.0080	0.0040 J	0.013	0.0020 J	< 0.0050
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	NA	<0.012 J	0.012 J	0.026 J [0.077 J]	<0.0079	0.0094	0.0012 J	<0.0059	<0.0050	0.0020 J	0.071	0.042	0.032	0.0020 J	<0.0050
Methylene Chloride	1,000	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	<0.55	<0.82 J	0.13 J	2.7 [3.0]	NA	0.42 J	1.3	<0.39	1.5 J	13	25	5.5	2.6	0.024 J	<0.33
Styrene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	1,000	NA NA	<0.012 J	0.011 J	0.0055 J [0.012 J]	<0.0079	0.020	0.0025 J	<0.0059	0.0010 J	0.0080	0.047	0.020	0.049	0.0020 J	<0.0050
Toluene Xylenes (total)	1,000	NA NA	<0.012 J	0.011 J	0.0055 J [0.012 J]	<0.0079	0.020	0.0025 J 0.0047 J	<0.0059	0.0010 J	0.0000	0.047	0.020	0.049	0.0020 3	<0.0050
Total BTEX	1,000	NA NA	<0.012 3	0.030 J	0.26 J [0.58 J]	< 0.0079	0.039 0.091 J	0.0047 J	<0.0059	0.0010 J	0.030 0.044 J	0.20	0.57 J	0.19	0.0000 0.012 J	<0.0050
Total VOCs		NA NA	<0.012	0.078 J	0.26 J [0.58 J]	< 0.0079	0.091 J	0.0084 J	<0.0059	0.0025 J	0.044 J	0.39	0.57 J	0.28	0.012 J	<0.0050
Detected SVOCs		1471	<0.01Z	0.0700	0.20 0 [0.00 0]	40.007	0.0010	0.000+0	40.0000	0.0020 0	0.044 0	0.00	0.07 0	0.20	0.012 0	₹0.0000
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA NA	NA.	NA NA	NA	NA NA	NA	NA NA	NA.	NA.	NA NA	NA	NA.	NA NA	NA NA
2-Methylnaphthalene		<0.55	<0.82 J	0.15 J	0.54 J [1.4 J]	NA	0.28 J	0.081 J	<0.39	1.1 J	5.7	21	2.4	0.18 J	<0.33	<0.33
2-Methylphenol	1,000	NA	NA	NA	NA NA	NA	NA	NA	NA.	NA	NA NA	NA	NA	NA NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	< 0.55	<0.82 J	<0.97 J	0.037 J [0.090 J]	NA	0.13 J	< 0.37	< 0.39	0.98 J	1.3 J	2.8 J	0.26 J	< 0.33	< 0.33	< 0.33
Acenaphthylene	1,000	< 0.55	<0.82 J	<0.97 J	0.096 J [0.24 J]	NA	0.063 J	< 0.37	< 0.39	6.6	9.3	13	1.0	0.027 J	< 0.33	< 0.33
Anthracene	1,000	< 0.55	<0.82 J	<0.97 J	<0.47 [<0.49]	NA	0.48 J	0.019 J	< 0.39	5.8	12	15	< 0.33	< 0.33	< 0.33	< 0.33
Benzo(a)anthracene	11	0.030 J	<0.82 J	0.085 J	<0.47 [<0.49]	NA	1.8	0.050 J	< 0.39	12	13	10	0.029 J	< 0.33	< 0.33	< 0.33
Benzo(a)pyrene	1.1	0.059 J	<0.82 J	<0.97 J	<0.47 [<0.49]	NA	1.6	0.039 J	< 0.39	12	12	7.8	0.029 J	< 0.33	< 0.33	< 0.33
Benzo(b)fluoranthene	11	0.035 J	<0.82 J	0.096 J	<0.47 [<0.49]	NA	1.6	0.035 J	< 0.39	11	10	5.9	0.020 J	< 0.33	< 0.33	< 0.33
Benzo(g,h,i)perylene	1,000	0.048 J	<0.82 J	<0.97 J	<0.47 [<0.49]	NA	0.90	<0.37	<0.39	12	10	4.3 J	< 0.33	<0.33	<0.33	< 0.33
Benzo(k)fluoranthene	110	0.043 J	<0.82 J	0.069 J	<0.47 [<0.49]	NA	1.6 NA	0.035 J	<0.39	15	10 NA	9.1	0.035 J	<0.33	<0.33	<0.33
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	110	0.041 J	0.048 J	0.15 J	<0.47 [<0.49]	NA NA	1.8	0.044 J	<0.39	14	13	8.6	0.020 J	<0.33	<0.33	<0.33
Dibenzo(a,h)anthracene	1.1	<0.55	<0.82 J	<0.97 J	<0.47 [<0.49]	NA NA	0.36 J	<0.37	<0.39	4.8	3.7	1.5 J	<0.33	<0.33	<0.33	<0.33
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA.	NA.	NA NA	NA	NA NA	NA	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA NA
Di-n-Butvlphthalate		NA NA	NA.	NA.	NA NA	NA	NA NA	NA	NA.	NA.	NA	NA.	NA.	NA	NA.	NA.
Fluoranthene	1,000	<0.55	0.078 J	0.17 J	<0.47 [<0.49]	NA	2.6	0.076 J	<0.39	19	24	22	0.048 J	0.0050 J	0.013 J	<0.33
Fluorene	1,000	<0.55	<0.82 J	<0.97 J	0.054 J [0.19 J]	NA	0.18 J	<0.37	<0.39	1.2 J	9.2	14	1.2	<0.33	<0.33	<0.33
Indeno(1,2,3-cd)pyrene	11	0.038 J	<0.82 J	<0.97 J	<0.47 [<0.49]	NA	0.91	0.017 J	<0.39	12	10	4.9	< 0.33	<0.33	<0.33	<0.33
Naphthalene	1,000	< 0.55	<0.82 J	0.13 J	2.7 [3.0]	NA	0.42 J	1.3	< 0.39	1.5 J	13	25	5.5	2.6	0.024 J	< 0.33
Phenanthrene	1,000	< 0.55	<0.82 J	0.58 J	<0.47 [<0.49]	NA	1.8	0.047 J	< 0.39	12	28	37	0.22 J	0.012 J	0.011 J	< 0.33
Phenol	1,000	NA	NA	NA	NA ,	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	0.045 J	0.049 J	0.13 J	<0.47 [<0.49]	NA	2.6	0.069 J	<0.39	14	16	15	0.026 J	0.0070 J	0.010 J	< 0.33
Total PAHs		0.34 J	0.18 J	1.6 J	3.4 J [4.9 J]	NA	19 J	1.8 J	< 0.39	160 J	200 J	220 J	11 J	2.8 J	0.058 J	< 0.33
Total SVOCs		0.34 J	0.18 J	1.6 J	3.4 J [4.9 J]	NA	19 J	1.8 J	< 0.39	160 J	200 J	220 J	11 J	2.8 J	0.058 J	< 0.33

Location ID:	6 NYCRR PART 375				SB-30								SB-31			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/13/00	6 - 8 03/13/00	10 - 12 03/13/00	20 - 22 03/13/00	24 03/13/00	28 - 30 03/13/00	38 - 40 03/13/00	48 - 50 03/13/00	2 - 4 03/07/00	6 - 8 03/07/00	14 - 16 03/07/00	20 - 22 03/07/00	28 - 30 03/07/00	38 - 40 03/07/00	48 - 50 03/07/00
Soil Removed at San	nple Location:															
Soil Stabilized at Sam																
Detected Pesticides	ipic Location .										l .					
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 16.4	NA 7.58	NA 1.45	NA 1.70	NA 1.17	NA 0.610	NA 0.650
Cyanide Iron	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	16.4 NA	7.58 NA	1.45 NA	NA	NA	0.610 NA	0.650 NA
Lead	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Silver	6.800	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA.	NA NA	NA	NA.	NA.
Sodium		NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.
Thallium		NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.
Vanadium		NA	NA	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Zinc	10,000	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous	-,															
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA.	NA.	NA NA	NA.	NA NA	NA	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA
Ignitability		NA	NA.	NA.	NA NA	NA.	NA NA	NA	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID:	6 NYCRR PART 375					SB-32								SB-33		
Sample Depth(Feet):	Industrial	2 - 4	6 - 8	10 - 12	14 - 16	20 - 22	22 - 24	28 - 30	38 - 40	48 - 50	6-8	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/14/00	03/14/00	03/14/00	03/14/00	03/14/00	03/14/00
Soil Removed at Sam	nple Location:															
Soil Stabilized at Sam	ple Location :															
Detected PCBs																
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	0.0010 J	<0.0050	0.0020 J	0.0090	0.034 J	0.024 J	0.019	0.0020 J	0.0020 J	<0.012 J	<3.5	<0.75	0.019	<0.0057 [0.0014 J]	<0.0062
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
Chloroform	700	NA 0.0050	NA 0.00040.1	NA 0.0050	NA 0.0050 J	NA 0.004	NA 0.40	NA 0.040	NA 0.0040 I	NA 0.0040 I	NA 0.040 J	NA 0.5	NA 0.00	NA 0.000	NA 0.0057 to 0040, II	NA 0.0000
Ethylbenzene Methylene Chloride	780 1,000	<0.0050 NA	0.00040 J NA	<0.0050 NA	0.0050 J NA	0.094 NA	0.13 NA	0.042 NA	0.0040 J NA	0.0040 J NA	<0.012 J NA	<3.5 NA	0.83 NA	0.029 NA	<0.0057 [0.0013 J] NA	<0.0062 NA
Naphthalene	1,000	<0.33	0.085 J	1.3	11	50	36	4.7	0.20 J	0.012 J	0.22 J	210 E	31 E	2.2	0.60 [0.20 J]	0.28 J
Styrene	1,000	<0.33 NA	0.065 J NA	NA	NA	NA	NA NA	NA	NA	0.012 J NA	NA	NA NA	NA NA	NA	0.60 [0.20 J] NA	0.26 J NA
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1.000	0.0020 J	<0.0050	0.0020 J	0.0080	0.17	0.19	0.026	0.0010 J	0.0030 J	<0.012 J	<3.5	0.34 J	0.064	<0.0057 [0.0011 J]	<0.0062
Xylenes (total)	1,000	0.00040 J	0.0020 J	0.0040 J	0.068	0.97	1.5	0.020	0.0090	0.017	<0.012 J	<3.5	15	0.33	0.0093 [0.016]	0.017
Total BTEX		0.0034 J	0.0024 J	0.0080 J	0.090 J	1.3 J	1.8 J	0.26	0.016 J	0.026 J	<0.012	<3.5	16 J	0.44	0.0093 [0.020 J]	0.017
Total VOCs		0.0034 J	0.0024 J	0.0080 J	0.090 J	1.3 J	1.8 J	0.26	0.016 J	0.026 J	< 0.012	<3.5	16 J	0.44	0.0093 [0.020 J]	0.017
Detected SVOCs																
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		< 0.33	0.033 J	1.2	12	6.4 J	1.7 J	0.073 J	0.0080 J	< 0.33	0.089 J	63 E	7.6 E	0.031 J	0.068 J [0.018 J]	0.038 J
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	< 0.33	0.020 J	0.11 J	1.0 J	3.2 J	< 0.33	0.011 J	< 0.33	< 0.33	<0.80 J	2.4	0.34 J	<0.38	<0.43 [<0.37]	< 0.39
Acenaphthylene	1,000	< 0.33	0.18 J	0.38 J	0.74 J	0.10 J	0.34 J	0.0090 J	< 0.33	< 0.33	0.48 J	21 E	3.2	<0.38	0.020 J [<0.37]	< 0.39
Anthracene	1,000	< 0.33	0.20 J	0.28 J	0.80 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	0.14 J	8.7 E	0.75	<0.38	<0.43 [<0.37]	< 0.39
Benzo(a)anthracene	11	<0.33	0.52	0.35 J	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	1.6 J	4.7 E	0.39 J	<0.38	<0.43 [<0.37]	<0.39
Benzo(a)pyrene	1.1	<0.33	0.44 J	0.37 J	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	2.8 J	3.4	0.27 J	<0.38	<0.43 [<0.37]	<0.39
Benzo(b)fluoranthene	11	<0.33	0.47 J	0.32 J	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	2.5 J	2.6	0.23 J	<0.38	<0.43 [<0.37]	<0.39
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1,000 110	<0.33 <0.33	0.46 J 0.50	0.074 J 0.34 J	<0.33 <0.33	<0.33 <0.33	<0.33	<0.33	<0.33 <0.33	<0.33	1.7 J 2.6 J	1.2 3.4	0.13 J 0.25 J	<0.38 <0.38	<0.43 [<0.37] <0.43 [<0.37]	<0.39 <0.39
bis(2-Ethylhexyl)phthalate	110	<0.33 NA	NA	0.34 J NA	<0.33 NA	<0.33 NA	<0.33 NA	<0.33 NA	<0.33 NA	<0.33 NA	Z.6 J NA	NA NA	NA	<0.38 NA	<0.43 [<0.37] NA	<0.39 NA
Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole		NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Chrysene	110	<0.33	0.55	0.44 J	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	1.5 J	3.7	0.33 J	<0.38	<0.43 [<0.37]	<0.39
Dibenzo(a.h)anthracene	1.1	<0.33	0.15 J	0.033 J	< 0.33	< 0.33	< 0.33	<0.33	<0.33	< 0.33	0.63 J	0.45 J	0.050 J	<0.38	<0.43 [<0.37]	< 0.39
Dibenzofuran	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	< 0.33	0.81	0.53	0.072 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	2.5 J	0.55	1.2	<0.38	<0.43 [<0.37]	< 0.39
Fluorene	1,000	< 0.33	0.033 J	0.54	5.1	0.77 J	< 0.33	< 0.33	< 0.33	< 0.33	0.042 J	13 E	1.6	<0.38	0.022 J [<0.37]	< 0.39
Indeno(1,2,3-cd)pyrene	11	< 0.33	0.43 J	0.093 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	1.9 J	1.5	0.14 J	<0.38	<0.43 [<0.37]	< 0.39
Naphthalene	1,000	< 0.33	0.085 J	1.3	11	50	36	4.7	0.20 J	0.012 J	0.22 J	210 E	31 E	2.2	0.60 [0.20 J]	0.28 J
Phenanthrene	1,000	< 0.33	0.32 J	1.4	4.1	0.13 J	< 0.33	0.010 J	0.0040 J	< 0.33	0.24 J	27 E	2.4	0.026 J	0.039 J [<0.37]	< 0.39
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NÁ	NA
Pyrene	1,000	< 0.33	0.80	0.49	0.032 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	1.5 J	0.38 J	0.66	<0.38	<0.43 [<0.37]	< 0.39
Total PAHs		< 0.33	6.0 J	8.3 J	35 J	61 J	38 J	4.8 J	0.21 J	0.012 J	20 J	370 J	51 J	2.3 J	0.75 J [0.22 J]	0.32 J
Total SVOCs		< 0.33	6.0 J	8.3 J	35 J	61 J	38 J	4.8 J	0.21 J	0.012 J	20 J	370 J	51 J	2.3 J	0.75 J [0.22 J]	0.32 J

							CUSE, NEW									
Location ID:	6 NYCRR PART 375					SB-32								SB-33		
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/08/00	6 - 8 03/08/00	10 - 12 03/08/00	14 - 16 03/08/00	20 - 22 03/08/00	22 - 24 03/08/00	28 - 30 03/08/00	38 - 40 03/08/00	48 - 50 03/08/00	6 - 8 03/14/00	14 - 16 03/14/00	20 - 22 03/14/00	28 - 30 03/14/00	38 - 40 03/14/00	48 - 50 03/14/00
Soil Removed at Sa																
Soil Stabilized at Sar	•			1												+
Detected Pesticides	ipie Location .					l .		l .		I .	l .		l .			
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
4,4'-DDE	120	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA
4,4'-DDT	94	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Aldrin	1.4	NA.	NA.	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA NA	NA.
Alpha-Chlordane	47	NA	NA.	NA	NA NA	NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.
Beta-BHC	14	NA.	NA NA	NA	NA NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA.
Delta-BHC	1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	0.520	9.56	7.21	0.640	1.78	0.760	0.600	0.600	0.590	20.1 J	9.60	<0.780	< 0.560	<0.640 [<0.570]	< 0.490
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	5.7 10.000		NA NA				NA NA	NA NA	NA NA	NA NA						NA NA
Nickel	10,000	NA		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium	6,600	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				
Detected Miscellaneous	10,000	14/1	14/3	14/1	1773	14/1	14/1	14/1	14/3	14/3	14/1	14/1	14/1	14/1	1973	14/1
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA	NA NA	NA.	NA NA	NA.

	6 NYCRR																
Location ID:	PART 375					SB-34							SE	3-35			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/06/00	6 - 8 03/06/00	10 - 12 03/06/00	14 - 16 03/06/00	20 - 22 03/06/00	28 - 30 03/06/00	38 - 40 03/07/00	48 - 50 03/06/00	48 - 50 03/07/00	2 - 4 03/08/00	6 - 8 03/08/00	16 - 18 03/08/00	18 - 20 03/08/00	28 - 30 03/08/00	38 - 40 03/08/00	48 - 50 03/08/00
Soil Removed at Sar	nple Location:																
Soil Stabilized at San	nple Location :																
Detected PCBs		l .								1			ı		l l		
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																	
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA 0.0050	NA 0.0050	NA 0.000	NA 0.0000	NA 0.040	NA 0.047	NA 0.00000 I	NA NA	NA 0.0050	NA 0.00000 J	NA NA	NA 0.0070	NA 0.0000 J	NA 0.044	NA 0.054	NA 0.0050
Benzene Carbon Disulfida	89	<0.0050 NA	<0.0050	0.022 NA	0.0080 NA	0.012 NA	0.017 NA	0.00030 J NA	NA NA	<0.0050 NA	0.00030 J NA	0.00040 J [0.00050 J] NA	0.0070 NA	0.0020 J NA	0.011 NA	0.051 NA	<0.0050 NA
Carbon Disulfide Chlorobenzene	1.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	780	<0.0050	<0.0050	0.027	0.011	0.013	0.048	0.00080 J	NA NA	<0.0050	<0.0050	<0.0050 [0.0020 J]	0.010	0.012	0.024	0.00040 J	<0.0050
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	0.55 J	0.086 J	0.36 J	0.39 J	1.9	3.4	0.15 J	NA	<0.33	NA	0.97 J [0.88 J]	NA	4.1	10	0.58	0.022 JB
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	< 0.0050	< 0.0050	0.0060 J	0.0040 J	0.023	0.086	0.00060 J	NA	< 0.0050	0.0010 J	<0.0050 [0.0030 J]	0.0090	0.0050 J	0.041	0.0010 J	< 0.0050
Xylenes (total)	1,000	< 0.0050	< 0.0050	0.062	0.026	0.084	0.27	0.0030 J	NA	< 0.0050	0.0020 J	<0.0050 [0.024]	0.052	0.075	0.24	0.0040 J	< 0.0050
Total BTEX		< 0.0050	< 0.0050	0.12 J	0.049 J	0.13	0.42	0.0047 J	NA	< 0.0050	0.0033 J	0.00040 J [0.030 J]	0.078	0.094 J	0.32	0.056 J	< 0.0050
Total VOCs		< 0.0050	< 0.0050	0.12 J	0.049 J	0.13	0.42	0.0047 J	NA	< 0.0050	0.0033 J	0.00040 J [0.030 J]	0.078	0.094 J	0.32	0.056 J	< 0.0050
Detected SVOCs																	
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene 2-Methylphenol	1,000	0.22 J NA	0.23 J	0.30 J NA	0.66 NA	1.4 NA	0.12 J	<0.33 NA	NA NA	<0.33 NA	NA NA	0.43 J [0.46 J] NA	NA NA	1.9 NA	0.21 J NA	0.011 J NA	<0.33 NA
3,3'-Dichlorobenzidine	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol	1.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline		NA.	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
Acenaphthene	1.000	0.11 J	0.031 J	0.030 J	0.12 J	0.15 J	<0.33	<0.33	NA.	<0.33	NA	0.18 J [0.16 J]	NA	0.12 J	<0.33	<0.33	<0.33
Acenaphthylene	1,000	0.77	0.12 J	0.10 J	0.36 J	0.55	0.017 J	<0.33	NA	<0.33	NA	0.65 J [0.73 J]	NA	0.68 J	0.037 J	< 0.33	<0.33
Anthracene	1,000	0.32 J	0.069 J	0.064 J	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	1.1 [0.97 J]	NA	0.081 J	< 0.33	< 0.33	< 0.33
Benzo(a)anthracene	11	0.42 J	0.14 J	0.027 J	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	2.8 [5.0]	NA	0.021 J	< 0.33	< 0.33	< 0.33
Benzo(a)pyrene	1.1	0.44 J	0.12 J	0.018 J	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	2.8 [4.8]	NA	0.010 J	< 0.33	< 0.33	< 0.33
Benzo(b)fluoranthene	11	0.34 J	0.17 J	0.0060 J	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	2.3 [4.9]	NA	0.0090 J	< 0.33	< 0.33	< 0.33
Benzo(g,h,i)perylene	1,000	0.83	0.20 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	2.0 [3.2]	NA	< 0.33	< 0.33	< 0.33	< 0.33
Benzo(k)fluoranthene	110	0.41 J	0.17 J	0.011 J	< 0.33	< 0.33	<0.33	<0.33	NA	<0.33	NA	2.9 [4.4]	NA	0.010 J	<0.33	< 0.33	< 0.33
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole Chrysene	110	0.55 J	0.20 J	0.027 J	<0.33	<0.33	<0.33	<0.33	NA NA	<0.33	NA NA	3.1 [4.9]	NA NA	0.014 J	<0.33	0.0060 J	<0.33
Dibenzo(a,h)anthracene	1.1	0.38 J	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	NA NA	<0.33	NA NA	0.67 J [0.92 J]	NA NA	<0.33	<0.33	< 0.33	<0.33
Dibenzofuran	1.000	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
Diethylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	0.43 J	0.17 J	0.17 J	0.0050 J	0.012 J	<0.33	<0.33	NA	<0.33	NA	4.3 [8.3]	NA	0.077 J	< 0.33	<0.33	<0.33
Fluorene	1,000	0.083 J	0.14 J	0.15 J	0.57	0.66	< 0.33	< 0.33	NA	< 0.33	NA	0.29 J [0.22 J]	NA	0.40 J	< 0.33	< 0.33	< 0.33
Indeno(1,2,3-cd)pyrene	11	0.82	0.14 J	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	< 0.33	NA	1.9 [3.0]	NA	< 0.33	< 0.33	< 0.33	< 0.33
Naphthalene	1,000	0.55 J	0.086 J	0.36 J	0.39 J	1.9	3.4	0.15 J	NA	< 0.33	NA	0.97 J [0.88 J]	NA	4.1	10	0.58	0.022 JB
Phenanthrene	1,000	0.54 J	0.36 J	0.22 J	0.13 J	0.050 J	0.0090 J	< 0.33	NA	< 0.33	NA	2.8 [2.5]	NA	0.26 J	< 0.33	0.0050 J	< 0.33
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	0.41 J	0.12 J	0.11 J	<0.33	0.0070 J	0.0050 J	<0.33	NA	<0.33	NA	4.5 [8.1]	NA	0.056 J	<0.33	0.0040 J	0.0030 J
Total PAHs		7.6 J	2.5 J	1.6 J	2.2 J	4.7 J	3.6 J	0.15 J	NA NA	<0.33	NA	34 J [53 J]	NA NA	7.7 J	10 J	0.61 J	0.025 J
Total SVOCs		7.6 J	2.5 J	1.6 J	2.2 J	4.7 J	3.6 J	0.15 J	NA	< 0.33	NA	34 J [53 J]	NA	7.7 J	10 J	0.61 J	0.025 J

	6 NYCRR																
Location ID:	PART 375					SB-34							SE	3-35			
Sample Depth(Feet):	Industrial	2 - 4	6 - 8	10 - 12	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50	48 - 50	2 - 4	6 - 8	16 - 18	18 - 20	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/06/00	03/06/00	03/06/00	03/06/00	03/06/00	03/06/00	03/07/00	03/06/00	03/07/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00	03/08/00
Soil Removed at San	nple Location:																
Soil Stabilized at Sam	nple Location :																
Detected Pesticides	ipio zoodaioni i																
4.4'-DDD	180	NA	NA	NA	NA	NA	NA										
4,4'-DDE	120	NA	NA	NA	NA	NA	NA										
4,4'-DDT	94	NA	NA	NA	NA	NA	NA										
Aldrin	1.4	NA	NA	NA	NA	NA	NA										
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA										
Beta-BHC	14	NA	NA	NA	NA	NA	NA										
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA										
Dieldrin	2.8	NA	NA	NA	NA	NA	NA										
Endosulfan II	920	NA	NA	NA	NA	NA	NA										
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA										
Endrin	410	NA	NA	NA	NA	NA	NA										
Endrin Ketone		NA	NA	NA	NA	NA	NA										
Gamma-Chlordane		NA	NA	NA	NA	NA	NA										
Heptachlor	29	NA	NA	NA	NA	NA	NA										
Methoxychlor		NA	NA	NA	NA	NA	NA										
Detected Inorganics																	
Aluminum		NA	NA	NA	NA	NA	NA										
Antimony		NA	NA	NA	NA	NA	NA										
Arsenic	16	NA	NA	NA	NA	NA	NA										
Barium	10,000	NA	NA	NA	NA	NA	NA										
Beryllium	2,700	NA	NA	NA	NA	NA	NA										
Cadmium	60	NA	NA	NA	NA	NA	NA										
Calcium		NA	NA	NA	NA	NA	NA										
Chromium		NA	NA	NA	NA	NA	NA										
Cobalt		NA	NA	NA	NA	NA	NA										
Copper	10,000	NA	NA NA	NA	NA	NA	NA	NA									
Cyanide	10,000	4.80	44.4	28.3	1.38	1.55	1.19	0.650	0.600	NA	0.550	4.35 [18.7]	0.680	0.670	0.590	0.690	0.680
Iron		NA	NA	NA	NA	NA	NA										
Lead	3,900	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA						
Magnesium	10.000		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA		NA NA
Manganese	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Mercury Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Potassium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Selenium	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Silver	6,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Sodium	0,800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA							
Detected Miscellaneous	10,000	1473	1403	14/3	101	101	14/1	1471	14/3	1471	14/3	17/1	14/3	14/3	14/1	14/3	14/1
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA										
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Total Sulfur		NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA					
rotal Gallar		INA	I N/A	INU	INA	INA	INC	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

Location ID:	6 NYCRR PART 375			SE	3-36								SB-	37			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/15/00	6 - 8 03/15/00	10 - 12 03/15/00	14 - 16 03/15/00	20 - 22 03/15/00	28 - 30 03/15/00	38 - 40 03/15/00	48 - 50 03/15/00	2 - 4 03/09/00	6 - 8 03/09/00	10 - 12 03/09/00	14 - 16 03/09/00	18 - 20 03/09/00	28 - 30 03/09/00	38 - 40 03/09/00	48 - 50 03/09/00
Soil Removed at Sar		X	00/10/00	03/10/00	00/10/00	00/10/00	00/10/00	00/10/00	00/10/00	00/03/00	00/03/00	00/03/00	00/03/00	00/03/00	00/03/00	00/03/00	00/03/00
	•	_ ^															
Soil Stabilized at San Detected PCBs	iple Location :		Х	Х	Х	X								l			
Aroclor-1242	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1242 Aroclor-1248		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total PCBs		NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
Detected VOCs			101														
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Benzene	89	<0.0050	0.00090 J [0.0010 J]	<0.0050 J [0.17 J]	0.19 J	0.059 J	0.068	0.12	0.12	0.0010 J	<0.0050 J	<0.0050	0.00050 J	<1.0	0.016	0.0030 J	0.060
Carbon Disulfide		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	< 0.0050	<0.0050 [<0.0050]	<0.0050 J [0.36 J]	0.34 J	0.64 J	0.041	0.0020 J	< 0.0050	< 0.0050	<0.0050 J	< 0.0050	< 0.0050	3.2	0.024	0.0020 J	0.00060 J
Methylene Chloride	1,000	NA	NA 1	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	0.40 J	1.0 J [0.40 J]	2,800 [530]	760	0.36 J	2.8	0.24 J	0.11 J	< 0.33	0.012 JB	0.31 JB	0.34 JB	690 B	40 B	0.079 JB	0.45 B
Styrene	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.00030 J	0.00050 J [0.00080 J]	0.14 J [0.41 J]	0.24 J	1.2 J	0.041	0.0020 J	< 0.0050	0.0030 J	0.00060 J	< 0.0050	0.0010 J	1.7 J	0.012	0.0030 J	0.0020 J
Xylenes (total)	1,000	< 0.0050	<0.0050 [<0.0050]	2.3 J [11 J]	12	13	0.23	0.018	0.0020 J	0.00030 J	0.00050 J	< 0.0050	0.0020 J	34	0.14	0.018	0.0070
Total BTEX		0.00030 J	0.0014 J [0.0018 J]	2.4 J [12 J]	13 J	15 J	0.38	0.14 J	0.12 J	0.0043 J	0.0011 J	< 0.0050	0.0035 J	39 J	0.19	0.026 J	0.070 J
Total VOCs		0.00030 J	0.0014 J [0.0018 J]	2.4 J [12 J]	13 J	15 J	0.38	0.14 J	0.12 J	0.0043 J	0.0011 J	< 0.0050	0.0035 J	39 J	0.19	0.026 J	0.070 J
Detected SVOCs																	
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.070 J	<0.33 J [<0.33 J]	670 [140]	160 J	0.088 J	0.041 J	0.028 J	0.022 J	< 0.33	< 0.33	0.25 J	1.4	160	< 0.33	0.0080 J	0.098 J
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	1.000	NA <0.33	NA NA	NA 32 J [6.8 J]	NA 8.0 J	NA <0.33	NA <0.33	NA <0.33	NA 0.00	NA <0.33	NA 0.0080 J	NA 0.18 J	NA 0.04 l	NA 9.3 J	NA <0.33	NA <0.33	NA 0.0060 J
Acenaphthene	1,000	<0.33 0.052 J	6.2 J [4.3 J] 21 J [7.2 J]	32 J [6.8 J] 140 J [31 J]	8.0 J 51 J	<0.33 0.072 J	0.0090 J	<0.33	<0.33	<0.33	<0.33	0.18 J 0.097 J	0.21 J 0.54	9.3 J 89 J	<0.33	<0.33	0.0060 J
Acenaphthylene Anthracene	1,000	0.052 J 0.015 J	49 J [29 J]	150 J [32 J]	35 J	0.072 J 0.014 J	0.0090 J	<0.33	<0.33	0.0020 J	0.017 J	0.097 3	0.54 0.17 J	31 J	<0.33	<0.33	0.039 J 0.018 J
Benzo(a)anthracene	1,000	0.013 J	26 J [14 J]	69 J [12 J]	18 J	<0.33	<0.33	<0.33	<0.33	0.0020 J	0.017 J	1.0	0.17 J	19 J	<0.33	<0.33	0.018 J
Benzo(a)pyrene	1.1	0.10 J	18 J [9.0 J]	53 J [7.9 J]	12 J	<0.33	<0.33	<0.33	<0.33	0.011 J	0.041 J	0.81	0.12 J	13 J	<0.33	<0.33	0.0090 J
Benzo(b)fluoranthene	11	0.13 J	18 J [8.4 J]	38 J [5.4 J]	10 J	<0.33	<0.33	<0.33	<0.33	0.010 J	0.034 J	0.70	0.073 J	8.8 J	<0.33	<0.33	0.0090 J
Benzo(g,h,i)perylene	1.000	0.084 J	8.1 J [4.3 J]	28 J [4.4 J]	6.3 J	<0.33	<0.33	<0.33	<0.33	0.0060 J	0.017 J	0.32 J	0.033 J	5.4 J	<0.33	<0.33	0.0030 J
Benzo(k)fluoranthene	110	0.10 J	17 J [9.1 J]	82 J [12 J]	17 J	<0.33	<0.33	<0.33	<0.33	0.011 J	0.033 J	0.83	0.091 J	15 J	<0.33	< 0.33	0.0090 J
bis(2-Ethylhexyl)phthalate		NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	0.14 J	23 J [12 J]	56 J [9.7 J]	15 J	< 0.33	< 0.33	< 0.33	< 0.33	0.013 J	0.046 J	0.98	0.11 J	16 J	< 0.33	< 0.33	0.014 J
Dibenzo(a,h)anthracene	1.1	0.026 J	3.0 J [1.4 J]	<0.33 [<0.33]	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	0.0070 J	0.11 J	0.014 J	< 0.33	< 0.33	< 0.33	< 0.33
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	0.072 J	79 J [40 J]	230 J [45 J]	56 J	0.022 J	0.010 J	0.0090 J	0.0070 J	0.025 J	0.11 J	2.6	0.41 J	47 J	< 0.33	< 0.33	0.040 J
Fluorene	1,000	0.0090 J	72 J [38 J]	240 J [51 J]	57 J	0.020 J	0.010 J	< 0.33	< 0.33	< 0.33	0.0070 J	0.54	0.98	53 J	< 0.33	< 0.33	0.028 J
Indeno(1,2,3-cd)pyrene	11	0.076 J	8.5 J [4.6 J]	29 J [4.4 J]	6.3 J	< 0.33	< 0.33	< 0.33	< 0.33	0.0050 J	0.015 J	0.33 J	0.036 J	6.6 J	< 0.33	< 0.33	0.0040 J
Naphthalene	1,000	0.40 J	1.0 J [0.40 J]	2,800 [530]	760	0.36 J	2.8	0.24 J	0.11 J	<0.33	0.012 JB	0.31 JB	0.34 JB	690 B	40 B	0.079 JB	0.45 B
Phenanthrene	1,000	0.036 J	130 J [76 J]	400 J [78 J]	93 J	0.039 J	0.023 J	0.016 J	0.011 J	0.010 J	0.070 J	1.8	0.79	100	< 0.33	0.0060 J	0.062 J
Phenol	1,000	NA 0.45	NA	NA NA	NA	NA .	NA .	NA 0.0070 I	NA	NA	NA 0.070	NA	NA .	NA	NA	NA	NA 0.000 l
Pyrene	1,000	0.15 J	54 J [42 J]	130 J [27 J]	33 J	0.014 J	0.0080 J	0.0070 J	<0.33	0.018 J	0.072 J	1.9	0.25 J	50 J	<0.33	<0.33	0.022 J
Total PAHs		1.6 J	530 J [300 J]	5,200 J [1,000 J]	1,300 J	0.63 J	2.9 J	0.30 J	0.15 J	0.12 J	0.53 J	13 J	5.7 J	1,300 J	40	0.093 J	0.82 J
Total SVOCs		1.6 J	530 J [300 J]	5,200 J [1,000 J]	1,300 J	0.63 J	2.9 J	0.30 J	0.15 J	0.12 J	0.53 J	13 J	5.7 J	1,300 J	40	0.093 J	0.82 J

	6 NYCRR																
Location ID:	PART 375				B-36								SB-				
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/15/00	6 - 8 03/15/00	10 - 12 03/15/00	14 - 16 03/15/00	20 - 22 03/15/00	28 - 30 03/15/00	38 - 40 03/15/00	48 - 50 03/15/00	2 - 4 03/09/00	6 - 8 03/09/00	10 - 12 03/09/00	14 - 16 03/09/00	18 - 20 03/09/00	28 - 30 03/09/00	38 - 40 03/09/00	48 - 50 03/09/00
Soil Removed at San	nple Location:	Х															
Soil Stabilized at Sam	nle I ocation :		Х	х	Х	Х											
Detected Pesticides	ipic Location .						l			l	l	l .		l .	l l		
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA.	NA NA
4,4'-DDT	94	NA.	NA NA	NA NA	NA.	NA.	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA.	NA	NA.	NA.	NA NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics			ı	I.		ı						ı		ı	l l		
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	NA	NA	1.90 [3.50]	0.590	1.10	0.530	0.600	0.600	0.500	0.550	1.34	1.30	1.58	0.560	0.620	0.560
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	6 NYCRR															
Location ID:	PART 375					-38							SB-39			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/13/00	6 - 8 03/13/00	10 - 12 03/13/00	14 - 16 03/13/00	20 - 22 03/13/00	28 - 30 03/13/00	38 - 40 03/13/00	48 - 50 03/13/00	2 - 4 03/09/00	6 - 8 03/09/00	10 - 12 03/09/00	14 - 16 03/09/00	28 - 30 03/09/00	38 - 40 03/09/00	48 - 50 03/09/00
Soil Removed at San		Х								Х						
Soil Stabilized at Sam	•		х	Х	х	Х					Х	Х	х			
Detected PCBs	ipie Location .	1	_ ^	^	^_	^				l	^	^				1
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	<0.0086	<0.011	<0.0087	<0.70	<0.80	0.0067 J	< 0.0057	0.053	<0.0050 J	NA	0.00040 J	0.0010 J	0.027	0.025	0.0020 J
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700 780	NA <0.0086	NA <0.011	NA <0.0087	NA <0.70	NA 0.78 J	NA 0.042	NA <0.0057	NA <0.0064	NA <0.0050 J	NA NA	NA 0.0090	NA 0.012	NA 0.031	NA <0.0050	NA <0.0050
Ethylbenzene Methylene Chloride	1,000	<0.0086 NA	<0.011 NA	<0.0087 NA	<0.70 NA	0.78 J NA	0.042 NA	<0.0057 NA	<0.0064 NA	<0.0050 J NA	NA NA	0.0090 NA	0.012 NA	0.031 NA	<0.0050 NA	<0.0050 NA
Naphthalene	1,000	1.6	0.084 J	0.24 J	9.6 E	360 E	12 E	0.11 J	0.088 J	<0.33	NA NA	22 B	4.3 B	10 B	0.15 JB	0.034 JB
Styrene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
Tetrachloroethene	300	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA.	NA	NA.	NA.	NA.	NA.	NA NA
Toluene	1,000	<0.0086	<0.011	<0.0087	<0.70	0.47 J	0.060	<0.0057	0.0029 J	0.00030 J	NA.	0.0010 J	0.0040 J	0.097	0.00070 J	0.00040 J
Xylenes (total)	1,000	<0.0086	<0.011	<0.0087	<0.70	12	0.53	<0.0057	< 0.0064	0.00050 J	NA	0.065	0.083	0.40	0.0050 J	0.00090 J
Total BTEX		<0.0086	< 0.011	<0.0087	<0.70	13 J	0.64 J	< 0.0057	0.056 J	0.00080 J	NA	0.075 J	0.10 J	0.56	0.031 J	0.0033 J
Total VOCs		< 0.0086	< 0.011	< 0.0087	< 0.70	13 J	0.64 J	< 0.0057	0.056 J	0.00080 J	NA	0.075 J	0.10 J	0.56	0.031 J	0.0033 J
Detected SVOCs					•											•
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.37 J	<0.77 J	0.30 J	19 E	130 E	0.79	< 0.37	< 0.40	<0.33 J	NA	4.6 J	1.4	0.42 J	0.031 J	0.0090 J
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA .	NA .	NA 0.000 I	NA 0.5	NA	NA 0.000 I	NA 0.07	NA	NA	NA	NA 0.45 I	NA .	NA	NA	NA 0.00
Acenaphthene	1,000	0.13 J	<0.77 J	0.038 J	3.5 0.42 J	5.2 E	0.032 J	<0.37	<0.40	<0.33 J	NA	0.15 J	0.082 J	<0.33	<0.33 0.014 J	<0.33 0.0040 J
Acenaphthylene	1,000 1,000	1.6 1.0	<0.77 J <0.77 J	0.10 J 0.51	0.42 J 21 E	32 E 19 E	0.33 J 0.096 J	<0.37 <0.37	<0.40 <0.40	0.0090 J <0.33 J	NA NA	0.78 J 0.22 J	0.32 J 0.084 J	0.096 J 0.024 J	0.014 J 0.0080 J	<0.33
Anthracene Benzo(a)anthracene	1,000	5.9 E	0.31 J	0.51	14 E	19 E	0.096 J	<0.37	<0.40	0.010 J	NA NA	0.22 J 0.45 J	< 0.33	<0.33	0.0050 J	<0.33
Benzo(a)pyrene	1.1	5.9 E	0.31 J	0.087 J	10 E	7.7 E	0.52	<0.37	<0.40	0.010 J	NA NA	0.43 J	<0.33	<0.33	0.0030 J	<0.33
Benzo(b)fluoranthene	11	6.6 E	0.20 J	0.087 J	12 E	10 E	0.40 J	<0.37	<0.40	0.012 J	NA NA	0.43 J	<0.33	<0.33	0.0050 J	<0.33
Benzo(g,h,i)perylene	1,000	2.9	<0.77 J	<0.47	4.0 E	3.0	0.16 J	<0.37	<0.40	0.010 J	NA	0.23 J	<0.33	<0.33	<0.33	<0.33
Benzo(k)fluoranthene	110	4.1 E	0.22 J	0.10 J	7.1 E	4.1 E	0.41	<0.37	<0.40	0.010 J	NA	0.44 J	< 0.33	<0.33	0.0040 J	< 0.33
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	5.2 E	0.29 J	0.43 J	11 E	8.8 E	0.066 J	< 0.37	<0.40	0.013 J	NA	0.46 J	< 0.33	< 0.33	0.0060 J	< 0.33
Dibenzo(a,h)anthracene	1.1	1.1	<0.77 J	<0.47	1.7	1.8	0.060 J	< 0.37	<0.40	<0.33 J	NA	0.085 J	< 0.33	< 0.33	< 0.33	< 0.33
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	14 E	0.58 J	1.4	41 E	31 E	0.11 J	<0.37	<0.40	<0.33 J	NA	0.91 J	<0.33	0.038 J	0.015 J	<0.33
Fluorene	1,000	0.40 J	<0.77 J	0.31 J	22 E	29 E	0.17 J	<0.37	<0.40	<0.33 J	NA	0.60 J	0.33 J	0.041 J	0.013 J	<0.33
Indeno(1,2,3-cd)pyrene	1.000	3.1	0.16 J	<0.47	4.5 E 9.6 E	3.6 360 E	0.17 J	<0.37	<0.40	0.011 J	NA NA	0.25 J 22 B	<0.33	<0.33	<0.33	<0.33 0.034 JB
Naphthalene	1,000	1.6	0.084 J <0.77 J	0.24 J	9.6 E 52 E	360 E 49 E	12 E 0.28 J	0.11 J <0.37	0.088 J <0.40	<0.33 <0.33 J	NA NA	0.70 J	4.3 B 0.57 J	10 B 0.081 J	0.15 JB 0.026 J	0.034 JB 0.0070 J
Phenanthrene Phenol	1,000	3.6 NA	<0.77 J NA	1.4 NA	NA NA	A9 E NA	0.28 J NA	<0.37 NA	<0.40 NA	<0.33 J NA	NA NA	0.70 J NA	0.57 J NA	0.081 J NA	0.026 J NA	0.0070 J NA
Pyrene	1,000	9.2 E	0.54 J	1.1	22 E	20 E	0.095 J	<0.37	<0.40	0.0080 J	NA NA	0.73 J	<0.33	<0.33	0.0090 J	<0.33
Total PAHs	1,000	66 J	2.6 J	6.7 J	260 J	730	16 J	0.11 J	0.088 J	0.0080 J	NA NA	33 J	7.1 J	11 J	0.0090 J	0.054 J
Total SVOCs		66 J	2.6 J	6.7 J	260 J	730	16 J	0.11 J	0.088 J	0.099 J	NA	33 J	7.1 J	11 J	0.29 J	0.054 J
. 5.6 5 . 500	1	000	2.00	0.7 0	2000	700	100	0.110	3.000 0	0.0000	14/3	55.5	7.10	110	0.200	0.004 0

Location ID:	6 NYCRR PART 375				SB	-38							SB-39			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/13/00	6 - 8 03/13/00	10 - 12 03/13/00	14 - 16 03/13/00	20 - 22 03/13/00	28 - 30 03/13/00	38 - 40 03/13/00	48 - 50 03/13/00	2 - 4 03/09/00	6 - 8 03/09/00	10 - 12 03/09/00	14 - 16 03/09/00	28 - 30 03/09/00	38 - 40 03/09/00	48 - 50 03/09/00
Soil Removed at Sar		Х								Х						
Soil Stabilized at Sam			х	х	Х	Х					х	Х	х			
Detected Pesticides	ipic Location .		_ ~	_ ~	Λ											l .
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
Cobalt		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Copper Cyanide	10,000 10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.530	NA <0.540	1.32 J	36.5 J	0.640	0.730	0.630	0.630	0.600
Iron		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.530 NA	<0.540 NA	1.32 J NA	36.5 J NA	NA	0.730 NA	0.630 NA	NA	NA
Lead	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium	3,900	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10.000	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	5.7	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium		NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA	NA NA
Selenium	6.800	NA NA	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA NA
Silver	6.800	NA NA	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous							•									•
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	6 NYCRR																				
Location ID:	PART 375			SE	-40						SB-41							SB-42			
Sample Depth(Feet):	Industrial	2 - 4	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/23/00	03/23/00	03/23/00	03/23/00	03/23/00	03/23/00	03/22/00	03/22/00	03/22/00	03/22/00	03/22/00	03/22/00	03/22/00	03/21/00	03/21/00	03/21/00	03/21/00	03/21/00	03/21/00	03/21/00
Soil Removed at San		Х													Х						
Soil Stabilized at Sam	ple Location :		Х	Х												Х	Х	Х			
Detected PCBs	-							114	114						114						
Aroclor-1242 Aroclor-1248		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																					
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene Oork on Discutting	89	<0.0068	<0.0069	0.0031 J	0.024	0.0024 J	<0.0057	<0.0069	<0.011 J	<0.0075	0.0019 J	0.021 J	0.067	0.0021 J	<0.0054	<0.011	<0.025	<2.2	0.068	0.0028 J	<0.0052
Carbon Disulfide Chlorobenzene	1.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	780	<0.0068	< 0.0069	0.028	0.061	0.0028 J	<0.0057	< 0.0069	<0.011 J	0.0027 J	0.0068 J	0.025 J	0.033	<0.0057	<0.0054	0.16	0.29	<2.2	0.15	0.0020 J	<0.0052
Methylene Chloride	1,000	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Naphthalene	1,000	0.76	<0.46	2.3	6.8	0.45	0.36 J	0.60 J	<0.71 J	0.040 J	0.21 J	6.5	1.8	0.098 J	0.053 J	4.9	2.3	4.5 E	8.2 E	2.8	0.037 J
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.021	0.0022 J	0.0087	0.046	0.0076	0.0031 J	0.0017 J	<0.011 J	<0.0075	0.0028 J	0.031	0.023	0.0013 J	< 0.0054	0.066	0.11	<2.2	0.30	0.0020 J	0.0015 J
Xylenes (total) Total BTEX	1,000	0.0015 J 0.023 J	0.0020 J 0.0042 J	0.10 0.14 J	0.33 0.46	0.041 0.054 J	0.014 0.017 J	<0.0069 0.0017 J	<0.011 J <0.011	0.0047 J 0.0074 J	0.016 0.028 J	0.16 0.24 J	0.18	0.0023 J 0.0057 J	<0.0054	1.0 1.2	1.8	<2.2 <2.2	1.6 2.1	0.010 0.017 J	0.0039 J 0.0054 J
Total VOCs		0.023 J	0.0042 J	0.14 J	0.46	0.054 J	0.017 J	0.0017 J	<0.011	0.0074 J	0.028 J	0.24 J	0.30	0.0057 J	<0.0054	1.2	2.2	<2.2	2.1	0.017 J	0.0054 J
Detected SVOCs		0.025 5	0.0042 3	0.143	0.40	0.054 5	0.017 3	0.0017 3	<0.011	0.00743	0.020 3	0.24 3	0.50	0.0037 3	VO.0034	1.2	2.2	\Z.Z	2.1	0.017 3	0.00343
2.4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.17 J	< 0.46	0.95	<1.6	0.068 J	0.085 J	0.41 J	<0.71 J	< 0.49	0.12 J	<1.0	0.028 J	< 0.39	0.065 J	1.8	0.83	16 E	0.50	0.32 J	< 0.39
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol 4-Nitroaniline	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline Acenaphthene	1.000	<0.42	0.24 J	0.064 J	<1.6	<0.39	<0.38	0.12 J	<0.71 J	<0.49	<0.48	NA <1.0	<0.38	<0.39	<0.36	<0.70	0.082 J	1.6	<0.38	0.029 J	<0.39
Acenaphthylene	1.000	<0.42	<0.46	0.004 J	<1.6	0.024 J	0.026 J	<2.2	<0.71 J	<0.49	<0.48	<1.0	<0.38	<0.39	0.017 J	0.41 J	0.002 J	11 E	0.20 J	0.023 J	<0.39
Anthracene	1,000	<0.42	0.22 J	0.034 J	<1.6	<0.39	<0.38	2.0 J	<0.71 J	0.079 J	<0.48	<1.0	<0.38	<0.39	<0.36	0.34 J	0.21 J	5.8 E	0.029 J	0.086 J	<0.39
Benzo(a)anthracene	11	0.45	0.093 J	<0.51	<1.6	< 0.39	<0.38	7.6	<0.71 J	< 0.49	0.029 J	<1.0	0.021 J	< 0.39	< 0.36	0.22 J	0.34 J	4.1 E	0.033 J	0.056 J	< 0.39
Benzo(a)pyrene	1.1	0.15 J	<0.46	<0.51	<1.6	< 0.39	<0.38	5.7	<0.71 J	< 0.49	<0.48	<1.0	<0.38	< 0.39	< 0.36	0.14 J	0.38 J	2.7	0.032 J	0.043 J	< 0.39
Benzo(b)fluoranthene	11	0.90	<0.46	<0.51	<1.6	< 0.39	<0.38	6.4	<0.71 J	<0.49	<0.48	<1.0	<0.38	< 0.39	< 0.36	0.14 J	0.33 J	2.2	0.037 J	0.040 J	< 0.39
Benzo(g,h,i)perylene	1,000	0.47	<0.46	<0.51	<1.6	<0.39	<0.38	2.6	<0.71 J	<0.49	<0.48	<1.0	<0.38	<0.39	<0.36	0.053 J	0.31 J	1.1	<0.38	0.027 J	<0.39
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	110	1.0 NA	0.064 J NA	<0.51 NA	<1.6 NA	<0.39 NA	<0.38 NA	5.2 NA	<0.71 J NA	<0.49 NA	<0.48 NA	<1.0 NA	<0.38 NA	<0.39 NA	<0.36 NA	0.13 J NA	0.30 J NA	2.6 NA	0.023 J NA	0.045 J NA	<0.39 NA
Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	110	0.72	0.11 J	<0.51	<1.6	<0.39	<0.38	7.5	<0.71 J	<0.49	0.028 J	<1.0	0.023 J	<0.39	<0.36	0.24 J	0.42 J	3.3	0.026 J	0.046 J	<0.39
Dibenzo(a,h)anthracene	1.1	0.24 J	<0.46	<0.51	<1.6	< 0.39	<0.38	0.93 J	<0.71 J	< 0.49	<0.48	<1.0	<0.38	< 0.39	< 0.36	<0.70	0.10 J	0.49	<0.38	<0.40	< 0.39
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	4.000	NA 0.40 L	NA 0.05 I	NA 0.54	NA 4.0	NA 0.00	NA 0.040 I	NA 4.4	NA 0.040 l	NA 0.54	NA 0.040 I	NA 4.0	NA 0.045 I	NA 0.00	NA 0.00	NA 0.70	NA 0.70	NA 0.0.F	NA 0.054 I	NA 0.44 I	NA 0.00
Fluoranthene	1,000 1,000	0.12 J <0.42	0.35 J 0.28 J	<0.51 0.34 J	<1.6 <1.6	<0.39 <0.39	0.018 J 0.023 J	14 0.22 J	0.048 J <0.71 J	0.51 0.043 J	0.048 J 0.031 J	<1.0 <1.0	0.045 J <0.38	<0.39 <0.39	<0.36 <0.36	0.72 0.38 J	0.76 0.24 J	9.9 E 8.7 E	0.051 J 0.042 J	0.14 J 0.12 J	<0.39 <0.39
Fluorene Indeno(1,2,3-cd)pyrene	1,000	<0.42 0.60	0.28 J <0.46	0.34 J <0.51	<1.6 <1.6	<0.39	<0.38	0.22 J 2.8	<0.71 J <0.71 J	<0.49	<0.48	<1.0 <1.0	<0.38	<0.39	<0.36	0.38 J 0.051 J	0.24 J 0.25 J	8.7 E 1.3	<0.38	0.12 J 0.030 J	<0.39
Naphthalene	1.000	0.76	<0.46	2.3	6.8	0.45	0.36 J	0.60 J	<0.71 J	0.049 J	0.21 J	6.5	1.8	0.098 J	0.053 J	4.9	2.3	4.5 E	8.2 E	2.8	0.037 J
Phenanthrene	1,000	0.11 J	<0.46	0.20 J	<1.6	0.032 J	0.046 J	7.2	<0.71 J	0.16 J	0.21 J	<1.0	0.030 J	< 0.39	< 0.36	1.5	1.0	18 E	0.092 J	0.23 J	<0.39
Phenol	1,000	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA
Pyrene	1,000	0.082 J	0.24 J	<0.51	<1.6	0.018 J	<0.38	13	0.038 J	0.39 J	0.048 J	<1.0	0.040 J	< 0.39	< 0.36	0.47 J	0.70 J	6.8 E	0.029 J	0.091 J	< 0.39
Total PAHs		5.8 J	1.6 J	4.3 J	6.8	0.59 J	0.56 J	76 J	0.086 J	1.2 J	0.59 J	6.5	2.0 J	0.098 J	0.14 J	12 J	8.8 J	100	9.3 J	4.3 J	0.037 J
Total SVOCs		5.8 J	1.6 J	4.3 J	6.8	0.59 J	0.56 J	76 J	0.086 J	1.2 J	0.59 J	6.5	2.0 J	0.098 J	0.14 J	12 J	8.8 J	100	9.3 J	4.3 J	0.037 J

Location ID:	6 NYCRR PART 375			SE	3-40						SB-41							SB-42			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/23/00	10 - 12 03/23/00	14 - 16 03/23/00	28 - 30 03/23/00	38 - 40 03/23/00	48 - 50 03/23/00	2 - 4 03/22/00	6 - 8 03/22/00	10 - 12 03/22/00	14 - 16 03/22/00	28 - 30 03/22/00	38 - 40 03/22/00	48 - 50 03/22/00	2 - 4 03/21/00	6 - 8 03/21/00	10 - 12 03/21/00	14 - 16 03/21/00	28 - 30 03/21/00	38 - 40 03/21/00	48 - 50 03/21/00
Soil Removed at Sa	mple Location:	Х													х						
Soil Stabilized at Sar	nnle Location ·		х	х												х	х	X			
Detected Pesticides	iipio Location :																				
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																					
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA 0.740	NA NA	NA	NA 0.400 N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.500	NA	NA
Cyanide	10,000	1.90 N	<0.710	<0.760 N	<0.510 N	<0.460 N	<0.510 N	12.9	101	3.00	6.30	<0.530	<0.520	<0.490	<0.520	9.30	120	2.20	<0.580	<0.600	<0.520
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Lead	3,900	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	10,000 5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	1101	107	1473	14/3	14/1	14/3	1473	1471	10/1	14/3	14/1	14/3	14/3	14/1	14/3	14/3	14/3	14/3	1471	17/1
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
nH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
i otai oullul		IVA	INA	INA	INA	IVA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

Location ID:	6 NYCRR PART 375				SB-4	3						SB-44			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/24/00	6 - 8 03/24/00	10 - 12 03/24/00	14 - 16 03/24/00	28 - 30 03/24/00	38 - 40 03/24/00	48 - 50 03/24/00	2 - 4 03/28/00	10 - 12 03/28/00	14 - 16 03/28/00	20 - 22 03/28/00	28 - 30 03/28/00	38 - 40 03/28/00	48 - 50 03/28/00
Soil Removed at San	nple Location:														
Soil Stabilized at Sam															
Detected PCBs	ipie Location .	l .		l .				l .			l			1	l
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA.	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA	NA	NA.	NA NA
Aroclor-1254		NA.	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA.
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs															
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	< 0.0054	< 0.013	0.0094	<0.014 J	<0.028 [0.013 J]	< 0.0062	< 0.0061	< 0.0060	0.0019 J	0.0045 J	0.24 J	0.035	<0.0058	< 0.0061
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA 0.0054	NA 0.0000 I	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.50 I	NA	NA	NA
Ethylbenzene Mathida a Oblasida	780	<0.0054	0.0029 J	0.20	<0.014 J	0.021 J [0.026]	<0.0062	<0.0061 NA	<0.0060	0.041	0.081	0.53 J	0.13 NA	<0.0058	<0.0061
Methylene Chloride Naphthalene	1,000 1,000	NA 0.44 J	NA 1.4	NA 2.5	NA 9.7	NA 10 [7.8]	NA 0.52	0.80	NA 0.77 J	NA 1.0	NA 4.8	NA 17	7.6	NA 0.26 J	NA 0.57 J
Styrene	1,000	NA	NA	NA	9.7 NA	10 [7.6] NA	NA	NA	NA	NA	NA	NA	NA	0.26 J NA	NA
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	1,000	0.0034 J	0.0078 J	0.022	<0.014 J	0.045 [0.080]	0.0017 J	<0.0061	0.0023 J	<0.0086	0.033	2.4	0.082	<0.0058	0.0044 J
Xylenes (total)	1,000	< 0.0054	0.061	0.022	0.064 J	0.28 [0.33]	<0.0062	<0.0061	<0.0060	0.020	0.033	5.0	0.50	<0.0058	0.0044 3
Total BTEX		0.0034 J	0.072 J	0.39	0.064 J	0.35 J [0.45 J]	0.0017 J	<0.0061	0.0023 J	0.063 J	0.34 J	8.2 J	0.75	<0.0058	0.013 J
Total VOCs		0.0034 J	0.072 J	0.39	0.064 J	0.35 J [0.45 J]	0.0017 J	<0.0061	0.0023 J	0.063 J	0.34 J	8.2 J	0.75	<0.0058	0.013 J
Detected SVOCs															
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.19 J	0.20 J	0.84	2.5	0.73 J [0.51 J]	0.063 J	0.10 J	0.42 J	0.15 J	0.95	5.7	2.9	0.074 J	0.14 J
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	0.49 J	4.0	0.32 J	0.12 J	<2.0 [<1.3]	<0.41	< 0.39	1.6 J	0.053 J	0.14 J	0.52 J	0.26 J	<0.38	< 0.59
Acenaphthylene	1,000	<1.2	<0.82	0.31 J	1.0 J	0.26 J [0.18 J]	0.022 J	0.061 J	0.40 J	0.066 J	0.43 J	2.7 J	1.4 J	0.028 J	0.057 J
Anthracene	1,000	1.5	2.9	1.5	0.16 J	<2.0 [0.089 J]	0.054 J	0.040 J	3.0	0.14 J	0.071 J	0.67 J	0.63 J	0.032 J	0.074 J
Benzo(a)anthracene	11	2.4	2.6	0.79	0.34 J	<2.0 [<1.3]	<0.41	0.043 J	9.9	0.35 J	0.21 J	<2.8	0.23 J	0.019 J	0.054 J
Benzo(a)pyrene	1.1 11	2.1	2.2	0.59 J	0.33 J	<2.0 [<1.3]	<0.41	0.034 J 0.032 J	9.9	0.39 J 0.32 J	0.18 J	<2.8	0.17 J	<0.38	0.041 J
Benzo(b)fluoranthene	1.000	1.6	1.7	0.43 J 0.24 J	0.24 J 0.16 J	<2.0 [<1.3]	<0.41 <0.41	0.032 J 0.019 J	7.6	0.32 J 0.29 J	0.16 J 0.11 J	<2.8 <2.8	0.13 J <1.8	<0.38	0.034 J <0.59
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1,000	1.3 2.0	2.4	0.24 J 0.63 J	0.16 J 0.34 J	<2.0 [<1.3] <2.0 [<1.3]	<0.41	0.019 J 0.033 J	5.7 11	0.29 J 0.42 J	0.11 J 0.17 J	<2.8 <2.8	<1.8 0.18 J	<0.38	<0.59 0.049 J
bis(2-Ethylhexyl)phthalate		NA	NA	NA	0.34 J NA	<2.0 [<1.5] NA	<0.41 NA	0.033 J NA	NA	0.42 J NA	NA	<2.6 NA	NA	<0.36 NA	0.049 J NA
Butylbenzylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
Carbazole		NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA.
Chrysene	110	2.3	2.3	0.73	0.29 J	<2.0 [<1.3]	<0.41	0.040 J	9.7	0.41 J	0.22 J	<2.8	0.20 J	<0.38	0.050 J
Dibenzo(a,h)anthracene	1.1	0.39 J	0.36 J	0.11 J	<1.8	<2.0 [<1.3]	< 0.41	< 0.39	2.2	0.11 J	< 0.94	<2.8	<1.8	< 0.38	< 0.59
Dibenzofuran	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	4.6	6.3	2.6	0.31 J	<2.0 [<1.3]	0.031 J	0.094 J	14	0.60	0.32 J	0.55 J	0.70 J	0.047 J	0.13 J
Fluorene	1,000	0.64 J	3.3	0.88	0.50 J	0.16 J [<1.3]	<0.41	0.052 J	1.2 J	0.066 J	0.32 J	1.8 J	1.3 J	0.048 J	0.10 J
Indeno(1,2,3-cd)pyrene	11	1.2	1.2	0.26 J	0.18 J	<2.0 [<1.3]	<0.41	0.020 J	5.7	0.27 J	0.11 J	<2.8	0.085 J	<0.38	< 0.59
Naphthalene	1,000	0.44 J	1.4	2.5	9.7	10 [7.8]	0.52	0.80	0.77 J	1.0	4.8	17	7.6	0.26 J	0.57 J
Phenanthrene	1,000	5.2	1.2	3.9	0.48 J	0.16 J [0.085 J]	0.051 J	0.14 J	10 J	0.53 J	0.25 J	2.2 J	2.0 J	0.11 J	0.26 J
Phenol	1,000	NA 0.0	NA 4.6	NA 0.0	NA 0.40 L	NA 0.0 (4.0)	NA 0.005 I	NA 0.074	NA 44	NA 0.00	NA 0.07 I	NA 0.00 I	NA 0.44	NA 0.000 I	NA 0.005 I
Pyrene Tatal PAUs	1,000	3.9	4.6	2.2	0.18 J	<2.0 [<1.3]	0.025 J	0.074 J	14	0.62	0.27 J	0.36 J	0.41 J	0.038 J	0.095 J
Total PAHs		30 J	38 J	19 J	17 J	11 J [8.7 J]	0.77 J	1.6 J	110 J	5.8 J	8.7 J	32 J	18 J	0.66 J	1.7 J
Total SVOCs		30 J	38 J	19 J	17 J	11 J [8.7 J]	0.77 J	1.6 J	110 J	5.8 J	8.7 J	32 J	18 J	0.66 J	1.7 J

	6 NYCRR					<u> </u>									
Location ID:	PART 375				SB-4	13						SB-44			
Sample Depth(Feet):	Industrial	2 - 4	6-8	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50	2 - 4	10 - 12	14 - 16	20 - 22	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/24/00	03/24/00	03/24/00	03/24/00	03/24/00	03/24/00	03/24/00	03/28/00	03/28/00	03/28/00	03/28/00	03/28/00	03/28/00	03/28/00
Soil Removed at San															
Soil Stabilized at Sam	•														
Detected Pesticides	ipie Location .		I	I			1	I.			1			I	
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
4.4'-DDT	94	NA.	NA.	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA
Aldrin	1.4	NA NA	NA.	NA.	NA	NA NA	NA NA	NA.	NA	NA.	NA NA	NA	NA	NA.	NA NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA	NA	NA NA	NA NA
Endosulfan Sulfate	920	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA	NA	NA NA	NA NA
Endrin	410	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics															
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	<0.490 N	<0.580 N	<0.710 N	1.60 N	<0.560 N [<0.540]	<0.560 N	<57.0 NR	9.50	22.2	12.8	<0.610	<0.560	< 0.570	<0.810
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA NA	NA								
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10,000	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NΑ	ΝA	NA	NA
Detected Miscellaneous		NIA	NIA.	NIA.	NIA	NIA	T NA	NIA.	NIA	NIA	I NIA	NIA I	NIA	I NIA	NA.
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA NA	NA NA	NA							
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
рн Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
i otai Suiitli		INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

Location ID:	6 NYCRR PART 375				SB-	45						SB	46			
Sample Depth(Feet):	Industrial	2 - 4	6-8	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50	2 - 4	6 - 8	10 - 12	14 - 16	-46 20 - 22	28 - 30	38 - 40	48 - 50
Date Collected:	Use SCOs	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00
Soil Removed at Sar	nple Location:															
Soil Stabilized at Sam	nple Location :															
Detected PCBs				l l	U U	U U		U				l l	U U	U		
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs																
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA 0.0047.1	NA	NA	NA .	NA	NA	NA	NA	NA	NA 0.0007	NA 0.004	NA 0.75	NA	NA	NA .
Benzene	89	0.0017 J	<0.010 J	<0.040	0.0031 J	0.016	0.011 [<0.0058]	0.0014 J	<0.0098	<0.014 J	<0.0067	<0.024	0.75	<0.60	0.0014 J	0.0014 J
Carbon Disulfide	1.000	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA
Chlorobenzene Chloroform	700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	700	<0.0060	<0.010 J	0.25	0.070	0.036	0.0022 J [<0.0058]	<0.0059	<0.0098	0.0031 J	0.0019 J	0.10	0.29 J	0.25 J	<0.0058	<0.0058
Methylene Chloride	1.000	<0.0060 NA	<0.010 J NA	NA	NA	0.036 NA	0.0022 J [<0.0056] NA	<0.0059 NA	<0.0098 NA	0.00313 NA	0.0019 J	NA	0.29 J NA	0.25 J NA	<0.0056 NA	<0.0056 NA
Naphthalene	1,000	0.28 J	6.0	2.3	<0.47	5.5	2.4 [0.23 J]	0.054 J	NA.	NA NA	0.17 J	0.73	3.7	4.8	0.026 J	0.066 J
Styrene		NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.0027 J	<0.010 J	0.073	0.028	0.020	0.0034 J [<0.0058]	0.0020 J	<0.0098	0.0046 J	< 0.0067	0.030	3.8	0.15 J	0.0020 J	0.0015 J
Xylenes (total)	1,000	< 0.0060	<0.010 J	0.96	0.37	0.13	0.014 [<0.0058]	< 0.0059	<0.0098	0.062	0.011	0.32	4.2	1.2	<0.0058	< 0.0058
Total BTEX		0.0044 J	< 0.010	1.3	0.47 J	0.20	0.031 J [<0.0058]	0.0034 J	<0.0098	0.070 J	0.013 J	0.45	9.0 J	1.6 J	0.0034 J	0.0029 J
Total VOCs		0.0044 J	< 0.010	1.3	0.47 J	0.20	0.031 J [<0.0058]	0.0034 J	<0.0098	0.070 J	0.013 J	0.45	9.0 J	1.6 J	0.0034 J	0.0029 J
Detected SVOCs																
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		0.11 J	2.2	0.96	<0.47	<0.77	0.046 J [<0.38]	<0.38	NA	NA	0.052 J	0.16 J	0.028 J	0.042 J	<0.38	<0.38
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol 4-Nitroaniline	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene	1.000	0.088 J	0.11 J	0.057 J	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA NA	NA NA	<0.46	0.032 J	<0.51	<0.76	<0.38	<0.38
Acenaphthylene	1,000	0.061 J	0.11 J	0.037 J	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA NA	NA NA	<0.46	0.032 J	<0.51	<0.76	<0.38	<0.38
Anthracene	1,000	0.44	0.075 J	0.39 J	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA.	NA	<0.46	0.073 J	<0.51	<0.76	<0.38	<0.38
Benzo(a)anthracene	11	1.8	0.14 J	2.4	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA.	NA.	<0.46	0.12 J	<0.51	<0.76	<0.38	<0.38
Benzo(a)pyrene	1.1	0.94	0.058 J	2.3	< 0.47	<0.77	<0.38 [<0.38]	<0.38	NA	NA	<0.46	0.10 J	<0.51	<0.76	<0.38	<0.38
Benzo(b)fluoranthene	11	1.5	0.099 J	1.7	< 0.47	< 0.77	<0.38 [<0.38]	<0.38	NA	NA	< 0.46	0.092 J	< 0.51	< 0.76	< 0.38	< 0.38
Benzo(g,h,i)perylene	1,000	NA	NA	0.94	< 0.47	< 0.77	<0.38 [<0.38]	<0.38	NA	NA	< 0.46	0.046 J	<0.51	< 0.76	< 0.38	< 0.38
Benzo(k)fluoranthene	110	1.8	0.12 J	2.2	< 0.47	< 0.77	<0.38 [<0.38]	< 0.38	NA	NA	< 0.46	0.080 J	< 0.51	< 0.76	< 0.38	< 0.38
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	1.7	0.12 J	2.2	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA	NA	<0.46	0.12 J	<0.51	<0.76	<0.38	<0.38
Dibenzo(a,h)anthracene	1.1	0.93 NA	0.058 J NA	0.36 J NA	<0.47 NA	<0.77 NA	<0.38 [<0.38]	<0.38 NA	NA NA	NA NA	<0.46 NA	<0.44 NA	<0.51 NA	<0.76 NA	<0.38 NA	<0.38 NA
Dibenzofuran Diethylphthalate	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	1.000	2.9	0.21 J	2.5	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA NA	NA NA	0.050 J	0.21 J	<0.51	<0.76	<0.38	<0.38
Fluorene	1,000	0.15 J	0.21 J	0.075 J	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA	NA NA	0.034 J	0.094 J	<0.51	<0.76	<0.38	<0.38
Indeno(1,2,3-cd)pyrene	11	0.36 J	<0.89	1.1	<0.47	<0.77	<0.38 [<0.38]	<0.38	NA	NA	<0.46	0.046 J	<0.51	<0.76	<0.38	<0.38
Naphthalene	1,000	0.28 J	6.0	2.3	<0.47	5.5	2.4 [0.23 J]	0.054 J	NA	NA	0.17 J	0.73	3.7	4.8	0.026 J	0.066 J
Phenanthrene	1,000	1.5	0.23 J	1.3	<0.47	<0.77	0.031 J [<0.38]	<0.38	NA	NA	0.093 J	0.26 J	<0.51	<0.76	<0.38	<0.38
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	1,000	2.7	0.21 J	2.4	< 0.47	<0.77	<0.38 [<0.38]	<0.38	NA	NA	0.047 J	0.18 J	<0.51	< 0.76	<0.38	< 0.38
Total PAHs		17 J	11 J	23 J	<0.47	5.5	2.5 J [0.23 J]	0.054 J	NA	NA	0.45 J	2.4 J	3.7 J	4.8 J	0.026 J	0.066 J
Total SVOCs		17 J	11 J	23 J	< 0.47	5.5	2.5 J [0.23 J]	0.054 J	NA	NA	0.45 J	2.4 J	3.7 J	4.8 J	0.026 J	0.066 J

	C NIVODD						•									
Location ID:	6 NYCRR PART 375				SB-4	45						SE	-46			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/27/00	6 - 8 03/27/00	10 - 12 03/27/00	14 - 16 03/27/00	28 - 30 03/27/00	38 - 40 03/27/00	48 - 50 03/27/00	2 - 4 03/27/00	6 - 8 03/27/00	10 - 12 03/27/00	14 - 16 03/27/00	20 - 22 03/27/00	28 - 30 03/27/00	38 - 40 03/27/00	48 - 50 03/27/00
Soil Removed at Sai																
Soil Stabilized at San	•															
Detected Pesticides	ipie Location .		l .					l .	l .		l .	l .				
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	120	NA NA	NA NA	NA.	NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA.	NA.	NA NA
4,4'-DDT	94	NA NA	NA	NA.	NA.	NA.	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA.	NA.	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	<0.570	3.80	<0.740	4.30	< 0.560	<0.560 [<0.540]	< 0.570	2.20 JN	82.7 N	1.50 N	1.10	<0.740	< 0.570	< 0.540	< 0.550
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Silver	6,800	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA	NA
Sodium		NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	NA NA			NA	NA
Thallium Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
	1	NIA.	NIA.	NIA	NIA	NIA	NIA	NIA.	NIA	NIA	NIA.	NIA	NIA	NIA	NIA	NA
Diesel Range Organics [C10-C28] Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
i utai Suiitli		IVA	INA	INA	INA	INA	INA	INA	IVA	INA	INA	IVA	INA	INA	INA	INA

	6 NYCRR														
Location ID:	PART 375				SB-47							SB-48			
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/22/00	6 - 8 03/22/00	10 - 12 03/22/00	14 - 16 03/22/00	28 - 30 03/22/00	38 - 40 03/22/00	48 - 50 03/22/00	2 - 4 03/23/00	10 - 12 03/23/00	14 - 16 03/23/00	20 - 22 03/23/00	28 - 30 03/23/00	38 - 40 03/23/00	48 - 50 03/23/00
Soil Removed at Sar	nple Location:	Х							Х						
Soil Stabilized at Sam	nle Location :		Х	Х	Х					Х	Х	Х			
Detected PCBs	.p.o zooda.o														
Aroclor-1242		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		NA NA	NA	NA.	NA.	NA NA	NA.	NA.	NA	NA NA	NA.	NA.	NA	NA.	NA
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs		•							•	•					•
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	< 0.0053	< 0.0056	<0.0068	< 0.76	<0.63 [<0.60]	0.012	< 0.0062	0.0013 J	0.0016 J	< 0.034	0.022 J	0.0098 J	0.011	< 0.0060
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	< 0.0053	< 0.0056	<0.0068	<0.76	0.15 [0.12]	<0.0058	< 0.0062	<0.0065	0.011	< 0.034	1.2	0.039	0.013	< 0.0060
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	0.10 J	<0.37	0.15 J	3.4	6.3 [8.5]	2.0	0.077 J	0.14 J	17 J	29	36	NA	NA	NA
Styrene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	0.0012 J	<0.0056	0.0022 J	<0.76	0.16 [0.19]	0.0011 J	< 0.0062	0.028	0.0017 J	0.044	1.4	0.089	0.0055 J	0.017
Xylenes (total)	1,000	< 0.0053	< 0.0056	<0.0068	0.48 J	2.5 [1.8]	<0.0058	<0.0062	0.0035 J	0.044	0.049	19 E	0.55	0.092	0.0027 J
Total BTEX		0.0012 J	<0.0056	0.0022 J	0.48 J	2.8 [2.1]	0.013 J	<0.0062	0.033 J	0.058 J	0.093	22 J	0.69 J	0.12 J	0.020 J
Total VOCs		0.0012 J	<0.0056	0.0022 J	0.48 J	2.8 [2.1]	0.013 J	<0.0062	0.033 J	0.058 J	0.093	22 J	0.69 J	0.12 J	0.020 J
Detected SVOCs															
2,4-Dimethylphenol		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA 0.000 I	NA 0.07	NA 0.000 I	NA 0.00	NA 0.070 LF 4.41	NA 0.007 I	NA 0.00	NA 0.46.1	NA 24 I	NA 0.0	NA 0.0.1	NA	NA	NA NA
2-Methylnaphthalene 2-Methylphenol	1,000	0.020 J NA	<0.37 NA	0.028 J NA	0.90 NA	0.076 J [<1.4] NA	0.097 J NA	<0.39 NA	0.16 J NA	31 J NA	8.2 NA	2.0 J NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
4-Methylphenol	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
4-Nitroaniline		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene	1,000	0.044 J	<0.37	0.030 J	0.076 J	<1.1 [<1.4]	0.018 J	<0.39	0.024 J	11 J	0.53 J	<6.8	NA	NA NA	NA.
Acenaphthylene	1,000	<0.35	<0.37	<0.38	0.38 J	<1.1 [<1.4]	0.027 J	<0.39	0.026 J	23 J	4.7	0.67 J	NA	NA	NA
Anthracene	1,000	0.087 J	< 0.37	0.11 J	0.13 J	<1.1 [<1.4]	<0.39	<0.39	0.13 J	110	1.5 J	<6.8	NA	NA	NA
Benzo(a)anthracene	11	0.13 J	0.046 J	0.21 J	0.11 J	<1.1 [<1.4]	< 0.39	< 0.39	0.68	100	0.55 J	<6.8	NA	NA	NA
Benzo(a)pyrene	1.1	0.10 J	0.040 J	0.16 J	0.075 J	<1.1 [<1.4]	< 0.39	< 0.39	0.65	84	0.44 J	<6.8	NA	NA	NA
Benzo(b)fluoranthene	11	0.082 J	0.046 J	0.13 J	0.072 J	<1.1 [<1.4]	< 0.39	< 0.39	0.55	79	0.37 J	<6.8	NA	NA	NA
Benzo(g,h,i)perylene	1,000	0.055 J	< 0.37	0.084 J	0.038 J	<1.1 [<1.4]	< 0.39	< 0.39	0.36 J	40 J	<4.4	<6.8	NA	NA	NA
Benzo(k)fluoranthene	110	0.11 J	0.041 J	0.17 J	0.069 J	<1.1 [<1.4]	< 0.39	< 0.39	0.70	66	0.40 J	<6.8	NA	NA	NA
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	110	0.12 J	0.049 J	0.21 J	0.098 J	<1.1 [<1.4]	<0.39	<0.39	0.61	80	0.41 J	<6.8	NA	NA	NA
Dibenzo(a,h)anthracene	1.1	<0.35	<0.37	0.034 J	<0.45	<1.1 [<1.4]	<0.39	<0.39	0.16 J	17 J	<4.4	<6.8	NA	NA	NA
Dibenzofuran	1,000	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
Diethylphthalate Di-n-Butylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	1.000	0.23 J	0.089 J	0.51	0.23 J	NA <1.1 [<1.4]	0.027 J	<0.39	0.87	230	1.6 J	NA <6.8	NA NA	NA NA	NA NA
Fluorantnene	1,000	0.23 J 0.048 J	<0.37	0.041 J	0.23 J 0.32 J	<1.1 [<1.4]	0.027 J 0.023 J	<0.39	0.87 0.044 J	96	3.0 J	<6.8	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	1,000	0.048 J	<0.37	0.041 J	0.32 J 0.041 J	<1.1 [<1.4]	<0.39	<0.39	0.044 J	40 J	<4.4	<6.8	NA NA	NA NA	NA NA
Naphthalene	1,000	0.037 J	<0.37	0.091 J	3.4	6.3 [8.5]	2.0	0.077 J	0.14 J	17 J	29	36	NA NA	NA NA	NA NA
Phenanthrene	1,000	0.10 J	0.038 J	0.13 J	0.54	<1.1 [<1.4]	0.051 J	<0.39	0.143	320	4.9	<6.8	NA NA	NA NA	NA NA
Phenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Pyrene	1,000	0.25 J	0.072 J	0.46	0.19 J	<1.1 [<1.4]	0.031 J	<0.39	0.88	170	0.98 J	<6.8	NA	NA	NA
Total PAHs		1.7 J	0.42 J	2.6 J	6.7 J	6.4 J [8.5]	2.3 J	0.077 J	7.0 J	1,500 J	57 J	39 J	NA	NA	NA
Total SVOCs		1.7 J	0.42 J	2.6 J	6.7 J	6.4 J [8.5]	2.3 J	0.077 J	7.0 J	1,500 J	57 J	39 J	NA	NA	NA
										.,					

	6 NYCRR					-									
Location ID:	PART 375				SB-47							SB-48			
Sample Depth(Feet):	Industrial	2 - 4 03/22/00	6 - 8 03/22/00	10 - 12	14 - 16	28 - 30	38 - 40	48 - 50	2 - 4 03/23/00	10 - 12 03/23/00	14 - 16 03/23/00	20 - 22 03/23/00	28 - 30 03/23/00	38 - 40 03/23/00	48 - 50
Date Collected:			03/22/00	03/22/00	03/22/00	03/22/00	03/22/00	03/22/00		03/23/00	03/23/00	03/23/00	03/23/00	03/23/00	03/23/00
Soil Removed at Sa		Х							Х						
Soil Stabilized at Sar	nple Location :		Х	X	X					Χ	X	X			l .
Detected Pesticides															
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics															
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	<0.510	<0.510	12.2	2.70	<0.580 [<0.550]	<0.470	<0.580	3.00	1.80	< 0.650	<0.710	<0.570 N	<0.570 N	<0.610 N
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	6,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous															
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Semilar Conduction Marketina	Location ID:	6 NYCRR PART 375				SB-4	19						SB	-50				SB-100	SB-101	SB-102
Sol Removed at Sample Location	Sample Depth(Feet):	Industrial				20 - 22	28 - 30						14 - 16	20 - 22					0-5	0-5
The Control of Standblad of Sample Location				03/20/00	03/20/00	03/20/00	03/20/00	03/21/00	03/21/00	03/26/00	03/26/00	03/26/00	03/26/00	03/26/00	03/26/00	03/26/00	03/26/00			
December Proceedings Procedings Procedings Proceedings Proce		•	^												-				^	^
Machine Mach		nple Location :		Х	X	Х														
April Apri		1													1			0.007		0.004
Monociry 100																				
Factor F																				
Total PICKS																				
Denote 1,000																				
250.00000000000000000000000000000000000																		40.02.	40.022	0.022.0
Exercise 1,000 NA NA NA NA NA NA NA		1.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Carbon Designation																				
Chorolomene	Benzene	89	< 0.0062	< 0.012	< 0.017	< 0.013	0.26	0.024	<0.0065 [<0.0066]	1.1	<0.0088	< 0.69	< 0.033	0.48 J	0.045	< 0.0058	< 0.0058	NA	NA	NA
Checkform	Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Emplementemen																				
Rethylence Chloride																				
Naphthalisme																				
System																				
Tetrachrorethene																				
Tolumen																				
Xylenes 1,000 -0,0082 -0,012 -0,013 -0,88 -1,9 -0,11 -0,0085 -0,0068 -1,4 -0,047 -1,0 -0,28 -0,0058 -0,0																				
Total PIEX 0.0016 0.017 0.018 0.85 2.7 0.16 0.0085 0.0086 0.0086 1.5 0.056 1.5 0.056 0.0088 0.0011 NA																				
Total VCCs		,																		
Detected SVDCs																				
2-Chiconaphthalene	Detected SVOCs																			
2-Methy/pinaphthalene	2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2-Methylphenol 1,000	2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
3.3**Dichiprobenzidine NA	2-Methylnaphthalene		0.074 J	0.093 J	0.83	160	0.066 J	0.51	<0.39 [<0.41]	110	0.15 J	2.0	4.8 E	0.051 J	< 0.38	< 0.38	0.021 J	NA	NA	NA
Ametrylyphenol		1																		
A-Niconline NA																				
Acenaphthene																				
AcceptityNere 1,000 0,020 J c0,71 0,25 J 76 0,042 J 0,25 J c0,39 c0,41 140 J 0,19 J 0,76 J 2,9 J c0,52 c0,38 c0,38 c0,39 NA NA NA NA NA NA NA N																				
Anthracere																				
Benzo(a)pyrene																				
Benzo(a)pyrene		,																		
Benzo(gh,i)perylene																				
Benzo(k) Iuoranthene	1.77																			
Discription	Benzo(g,h,i)perylene	1,000	0.34 J	< 0.71	< 0.50	5.5 J	< 0.40	0.033 J	<0.39 [<0.41]	130	0.70	0.17 J	2.1	< 0.52	< 0.38	< 0.38	< 0.39	NA	NA	NA
Butylbenzylphthalate NA	Benzo(k)fluoranthene	110	0.49	< 0.71	< 0.50		0.061 J	0.060 J	<0.39 [<0.41]							<0.38	0.042 J			NA
Carbazole NA																				
Chrysene																				
Dibenzo(a,h)anthracene																				
Dibenzofuran 1,000																				
Diethylphthalate NA NA NA NA NA NA NA																				
Di-n-Butylphthalate NA NA <td></td> <td>,</td> <td></td>		,																		
Fluoranthene 1,000 1.1 <0.71 0.33 J 35 <0.40 0.22 J <0.39 <0.41] 1,100 E 2.0 1.0 27 E <0.52 <0.38 <0.38 0.11 J NA																				
Fluorene 1,000 0.099 J <0.71 0.92 43 0.016 J 0.18 J <0.39 <0.41 210 0.24 J 1.3 5.9 E <0.52 <0.38 <0.38 0.029 J NA NA NA NA NA NA NA																				
Indeno(1,2,3-cd)pyrene																				
Naphthalene 1,000 0.091 J 0.090 J 0.69 150 6.1 E 2.5 <0.39 <0.41 260 0.29 J 3.1 11 E 12 E 0.25 J 0.029 J 0.11 J NA NA NA NA NA NA NA		1,000																		
Phenol 1,000 NA																				
Pyrene 1,000 1.2 < 0.71 0.17 J 33 < 0.40 0.14 J < 0.39 [< 0.41] 740 E 1.7 0.62 12 E < 0.52 < 0.38 < 0.08 J 0.067 J NA NA NA Total PAHs 7.2 J 0.18 J 5.9 J 690 J 6.5 J 4.8 J < 0.39 [< 0.41]																				
Total PAHs 7.2 J 0.18 J 5.9 J 690 J 6.5 J 4.8 J <0.39 (<0.41) 18,000 J 15 J 17 J 120 J 12 J 0.27 J 0.050 J 0.71 J NA NA NA NA	Phenol	1,000	NA	NA	NA	NA		NA	NA 1								NA			NA
		1,000																		
Total SVOCs 7.2 0.18 5.9 690 6.5 4.8 <0.39 (<0.41) 18,000 15 17 120 12 0.27 0.050 0.71 NA NA NA NA NA NA NA N	Total SVOCs		7.2 J	0.18 J	5.9 J	690 J	6.5 J	4.8 J	<0.39 [<0.41]	18,000 J	15 J	17 J	120 J	12 J	0.27 J	0.050 J	0.71 J	NA	NA	NA

Location ID:	6 NYCRR PART 375				SB-	49						SB-	-50				SB-100	SB-101	SB-102
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	2 - 4 03/20/00	6 - 8 03/20/00	14 - 16 03/20/00	20 - 22 03/20/00	28 - 30 03/20/00	38 - 40 03/21/00	48 - 50 03/21/00	2 - 4 03/28/00	6 - 8 03/28/00	10 - 12 03/28/00	14 - 16 03/28/00	20 - 22 03/28/00	28 - 30 03/28/00	38 - 40 03/28/00	48 - 50 03/28/00	08/27/10	0-5 08/24/10	0-5 08/27/10
Soil Removed at Sa	mple Location:	Х															Х	х	х
Soil Stabilized at Sar	•	-	х	Х	Х														
Detected Pesticides	iipie Location .	1		^	^	I	I		1	I	I	I	I				I.	l	
4.4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	120	NA NA	NA NA	NA.	NA	NA.	NA	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA.	NA NA	NA	NA.	NA NA	NA NA
4,4'-DDT	94	NA.	NA NA	NA.	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics																			
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	10,000	0.980	27.6	1.30	<0.660	<0.510	1.30	<0.530 [<0.620]	6.70	16.6	1.10	1.50	< 0.690	<0.580	<0.540	<0.540	22.4	108	49.9
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	3,900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	10,000	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	6,800 6,800	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Silver	-,	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Sodium											NA NA		NA NA		NA				
Thallium Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	10,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	370	990	190
Gasoline Range Organics [C10-C28]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.04 J	<0.32	190 <0.46
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NonIgnitable	<0.32 NonIgnitable	<0.46 NonIgnitable
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	7.49 HF	7.41 HF	7.35 HF
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	7.49 HF 7.000	7.41 HF 479	7,800
TOTAL SUITUI		INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	7,000	4/9	7,000

Location ID:	6 NYCRR PART 375	SB-103	SB-104	SB-105	SB-106	SB-107	SB-108	SB-109	SE-B-1	SE-B-2	SE-EW-1	SE-SW-1	SS-1	SS-3	SS-4	SS-5	SS-6	T1	T2
Sample Depth(Feet): Date Collected:	Industrial Use SCOs	0-5 08/25/10	0-5 08/24/10	0-5 08/25/10	0-5 08/25/10	0-5 08/25/10	0-5 08/25/10	0-5 08/23/10	10/02/01	10/02/01	10/02/01	10/02/01	07/18/95	07/18/95	07/18/95	03/31/98	03/31/98	10 - 15 07/01/01	5 - 10 07/01/01
Soil Removed at San	nple Location:	X	X	Х	X		X								Х				
Soil Stabilized at Sam	ple Location :																		
Detected PCBs				•	•	•	•		•	•	•	•		•		•			*
Aroclor-1242		< 0.025	< 0.020	< 0.019	< 0.023	< 0.025	< 0.022	< 0.020	NA	NA	NA	NA	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Aroclor-1248		< 0.025	< 0.020	< 0.019	< 0.023	< 0.025	< 0.022	< 0.020	NA	NA	NA	NA	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Aroclor-1254		<0.025	< 0.020	< 0.019	< 0.023	< 0.025	< 0.022	< 0.020	NA	NA	NA	NA	< 0.0330	< 0.0330	0.330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Aroclor-1260		< 0.025	< 0.020	<0.019	< 0.023	0.019 J	0.017 Jp	< 0.020	NA	NA	NA	NA	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Total PCBs		< 0.025	<0.020	<0.019	< 0.023	0.019 J	0.017 J	<0.020	NA	NA	NA	NA	< 0.0670	< 0.0670	0.330	<0.0670	<0.0670	< 0.0670	< 0.0670
Detected VOCs																			
2-Butanone	1,000	NA	NA	NA	NA	NA	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA						
Acetone	1,000	NA	NA	NA	NA	NA	0.041 B	0.091 B	0.063 B	0.020 B	0.025 B	NA	NA						
Benzene	89	NA	0.0010 J	0.0088	0.0041	0.0010 J	<0.010	<0.010	<0.010	< 0.010	< 0.010	NA	NA						
Carbon Disulfide		NA	NA	NA	NA	NA	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA						
Chlorobenzene	1,000	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA
Chloroform	700	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA -0.00E8	NA 0.027	NA -0.0042	NA -0.0044	<0.010	<0.010	<0.010	<0.010	<0.010	NA NA	NA NA
Ethylbenzene Methylene Chloride	780 1,000	NA NA	<0.0058 NA	0.027 NA	<0.0042 NA	<0.0044 NA	<0.010 0.0050 J	<0.010 0.0080 J	<0.010 0.0060 J	<0.010 <0.010	<0.010 <0.010	NA NA	NA NA						
Naphthalene	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	0.0060 J	NA	NA	NA	NA NA						
Styrene		NA NA	NA NA	NA NA	NA NA	NA NA	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA NA						
Tetrachloroethene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	<0.010	<0.010	<0.010	<0.010	0.00090 J	NA.	NA.
Toluene	1,000	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	<0.0073	0.051	0.0062	0.0020 J	<0.010	<0.010	<0.010	<0.010	< 0.010	NA	NA
Xylenes (total)	1,000	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	<0.0073	0.29	0.00090 J	0.00070 J	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA
Total BTEX		NA	0.0010 J	0.38	0.011 J	0.0037 J	<0.010	< 0.010	<0.010	<0.010	<0.010	NA	NA						
Total VOCs		NA	0.0010 J	0.38	0.011 J	0.0037 J	0.046 J	0.099 J	0.069 J	0.020	0.026 J	NA	NA						
Detected SVOCs			1			1	1				ı								
2,4-Dimethylphenol		NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA						
2-Chloronaphthalene		NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA						
2-Methylnaphthalene		NA	NA	NA	NA	NA	0.021 J	0.071 J	0.030 J	0.080 J	0.052 J	NA	NA						
2-Methylphenol	1,000	NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA						
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA						
4-Methylphenol	1,000	NA	NA	NA	NA	NA	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	NA	NA						
4-Nitroaniline		NA	NA	NA	NA	NA	<0.80	<0.80	<0.80	<0.80	<0.80	NA	NA						
Acenaphthene	1,000	NA	0.029 J	12 J	0.14 J	0.023 J	0.046 J	0.15 J	0.068 J	0.14 J	0.063 J	NA	NA						
Acenaphthylene	1,000	NA	0.37 J	70	1.1	0.21 J	0.55 J	0.27 J	0.20 J	0.48 J	0.41 J	NA	NA						
Anthracene	1,000	NA	0.46 J	90	1.5	0.21 J	0.54 J	0.38 J	0.30 J	0.78 J	0.36 J	NA	NA						
Benzo(a)anthracene	11	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.8	150	8.1	0.52	2.1	1.1	1.7	3.1	0.68	NA	NA NA
Benzo(a)pyrene	1.1 11	NA NA	1.5 1.8	120 150	7.4 10	0.46	2.2 3.2	1.1	1.7 2.8	3.2 4.1	0.78 0.86	NA NA	NA NA						
Benzo(b)fluoranthene Benzo(q,h,i)perylene	1.000	NA NA	0.90	41	2.6	0.63 0.24 J	0.18 J	0.10 J	0.18 J	0.064 J	0.004 J	NA NA	NA NA						
Benzo(k)fluoranthene	110	NA NA	0.86	66	4.5	0.24 3	1.6	1.0	1.2	2.5	0.024 3	NA NA	NA NA						
bis(2-Ethylhexyl)phthalate		NA NA	NA	NA	NA	NA	0.070 JB	0.22 JB	0.14 JB	0.24 J	0.25 J	NA.	NA NA						
Butylbenzylphthalate		NA	NA	NA NA	NA NA	NA NA	NA	NA	NA.	NA	NA	NA	< 0.33	0.034 J	<0.33	0.12 J	0.036 J	NA	NA
Carbazole		NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	0.15 J	0.27 J	0.16 J	0.24 J	0.079 J	NA	NA
Chrysene	110	NA	1.7	120	7.5	0.46	2.5	1.2	2.1	3.6	0.94	NA	NA						
Dibenzo(a,h)anthracene	1.1	NA	0.24	14	0.91	0.067	0.22 J	0.16 J	0.26 J	0.14 J	0.049 J	NA	NA						
Dibenzofuran	1,000	NA	NA	NA	NA	NA	0.037 J	0.11 J	0.035 J	0.092 J	0.041 J	NA	NA						
Diethylphthalate		NA	NA	NA	NA	NA	< 0.33	0.13 JB	0.016 JB	< 0.33	< 0.33	NA	NA						
Di-n-Butylphthalate		NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA						
Fluoranthene	1,000	NA	3.3	370	13	0.84	4.6	2.5	3.3	5.5	1.3	NA	NA						
Fluorene	1,000	NA	0.13 J	54	0.30 J	0.10 J	0.091 J	0.16 J	0.069 J	0.12 J	0.048 J	NA	NA						
Indeno(1,2,3-cd)pyrene	11	NA	0.92	50	3.2	0.26	0.48 J	0.38 J	0.60 J	0.35 J	0.12 J	NA	NA						
Naphthalene	1,000	NA	0.086 J	74	0.27 J	0.11 J	0.028 J	0.17 J	0.043 J	0.12 J	0.059 J	NA	NA						
Phenanthrene	1,000	NA	1.3	250	4.8	0.56	2.0	1.6	1.1	2.6	0.75	NA	NA						
Phenol	1,000	NA	NA	NA	NA	NA	< 0.33	<0.33	< 0.33	< 0.33	<0.33	NA	NA						
Pyrene	1,000	NA	3.0	250	9.9	0.79	4.1	1.9	3.1	2.9	0.82	NA	NA						
Total PAHs		NA	NA	NA	NA	NA NA	NA NA	NA	18 J	1,900 J	75 J	5.8 J	25 J	14 J	19 J	30 J	7.9 J	NA	NA
Total SVOCs		NA	18 J	1,900 J	75 J	5.8 J	25 J	15 J	19 J	31 J	8.3 J	NA	NA						

Location ID:	6 NYCRR PART 375	SB-103	SB-104	SB-105	SB-106	SB-107	SB-108	SB-109	SE-B-1	SE-B-2	SE-EW-1	OF 0W 4	SS-1	SS-3	SS-4	00.5	00.0	T1	T2
Sample Depth(Feet):	Industrial	0-5	0-5	0-5	0-5	0-5	0-5	0-5	SE-B-1	SE-B-2	SE-EW-1	SE-SW-1	55-1	55-3	55-4	SS-5	SS-6 	10 - 15	5 - 10
Date Collected:	Use SCOs	08/25/10	08/24/10	08/25/10	08/25/10	08/25/10	08/25/10	08/23/10	10/02/01	10/02/01	10/02/01	10/02/01	07/18/95	07/18/95	07/18/95	03/31/98	03/31/98	07/01/01	07/01/01
Soil Removed at San		х	х	Х	Х		Х								х				
Soil Stabilized at Sam	nple Location :																		
Detected Pesticides			· ·		l.	l.									ı	L	L		-
4,4'-DDD	180	NA	NA	NA	NA	NA	< 0.0033	< 0.0033	< 0.0033	< 0.0033	0.0062 P	NA	NA						
4,4'-DDE	120	NA	NA	NA	NA	NA	< 0.0033	< 0.0033	< 0.0033	< 0.0033	0.013 P	NA	NA						
4,4'-DDT	94	NA	NA	NA	NA	NA	< 0.0033	0.023 P	< 0.0033	0.064 B	0.028 B	NA	NA						
Aldrin	1.4	NA	NA	NA	NA	NA	0.0011 JP	<0.0017	< 0.0017	< 0.0017	<0.0017	NA	NA						
Alpha-Chlordane	47	NA	NA	NA	NA	NA	<0.0017	<0.0017	0.012 P	0.00053 JP	<0.0017	NA	NA						
Beta-BHC	14	NA	NA	NA	NA	NA	<0.0017	<0.0017	< 0.0017	<0.0017	<0.0017	NA	NA						
Delta-BHC	1,000	NA	NA	NA	NA	NA	< 0.0017	<0.0017	< 0.0017	< 0.0017	< 0.0017	NA	NA						
Dieldrin	2.8	NA	NA	NA	NA	NA	< 0.0033	<0.0033	0.0039 J	< 0.0033	< 0.0033	NA	NA						
Endosulfan II	920	NA	NA	NA	NA	NA	< 0.0033	<0.0033	< 0.0033	< 0.0033	0.0023 JP	NA	NA						
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	< 0.0033	<0.0033	<0.0033	< 0.0033	0.0067 P	NA	NA						
Endrin	410	NA	NA	NA	NA	NA	<0.0033	<0.0033	<0.0033	<0.0033	0.0079 P	NA	NA						
Endrin Ketone		NA	NA	NA	NA	NA	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	NA	NA						
Gamma-Chlordane		NA	NA	NA	NA	NA	0.0026 J	0.046 P	0.0020 JP	0.0013 JP	0.00051 JP	NA	NA						
Heptachlor	29	NA NA	NA	NA NA	NA NA	NA NA	< 0.0017	<0.0017	<0.0017	<0.0017	<0.0017	NA	NA NA						
Methoxychlor		NA	NA	NA	NA	INA	<0.017	<0.017	<0.017	<0.017	<0.017	NA	NA						
Detected Inorganics		N/A	NIA.	I NIA	NIA	N/A	NIA	N/A	NIA.	NIA.	NIA.	NIA	0.000	0.000	0.000	0.700	0.470	NIA.	NIA
Aluminum		NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	6,660	9,330	2,330	9,780	2,170	NA	NA
Antimony		NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	9.80 BN	<8.00	<6.60	<0.980	<1.10	NA	NA
Arsenic	16 10.000	NA NA	NA NA	NA NA	NA NA	NA NA	4.40 79.7	51.0 64.0	7.50 32.6 B	7.10	3.00 35.6 B	NA NA	NA NA						
Barium	2,700	NA NA	NA NA	NA NA	NA NA	NA NA	<0.200	<0.240	<0.200	81.1 0.540 B	<0.260	NA NA							
Beryllium Cadmium	60	NA NA	NA NA	NA NA	NA NA	NA NA	<0.600	<0.240	0.830 B	0.540 B	0.300 B	NA NA	NA NA						
Calcium		NA NA	NA NA	NA NA	NA NA	NA NA	71.100 E	12.200 E	244.000 E	23,200 E	50.800 E	NA NA	NA NA						
Chromium		NA NA	NA NA	NA NA	NA NA	NA NA	11.2	11.9	6.40	23,200 E	9.30	NA NA	NA NA						
Cobalt		NA NA	NA NA	NA NA	NA NA	NA NA	5.30 B	4.20 B	7.10 B	8.90 B	2.60 B	NA	NA						
Copper	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	19.3	15.2	17.1	34.8	27.7	NA NA	NA
Cvanide	10,000	3.45	110	0.256 J	85.6	22.7	4.23	1.36	NA NA	NA NA	NA NA	NA NA	< 0.550	2.70	<1.00	5.01	<0.660	NA NA	NA NA
Iron		NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA.	13,000 E	12,900 E	10,300 E	21,100	6,640	NA	NA
Lead	3.900	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA	NA	NA NA	NA.	23.7 E	44.7 E	51.6 E	82.0	69.9	NA	NA
Magnesium		NA	NA	NA	NA	NA	16,100 E	3,540 E	11.400 E	10.800	7,630	NA	NA						
Manganese	10,000	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	360 EN	385 EN	346 EN	368	135	NA	NA
Mercury	5.7	NA	NA	NA	NA	NA	0.190 N	2.00 N	1.40 N	0.220	0.190	NA	NA						
Nickel	10,000	NA	NA	NA	NA	NA	18.0	12.5	19.4	27.0	8.70 B	NA	NA						
Potassium		NA	NA	NA	NA	NA	1,130 E	490 E	702 E	1,720 E	522 BE	NA	NA						
Selenium	6,800	NA	NA	NA	NA	NA	< 0.400	0.410 BN	0.220 BN	2.40	0.940 B	NA	NA						
Silver	6,800	NA	NA	NA	NA	NA	< 0.400	<0.480	< 0.400	0.300 B	< 0.260	NA	NA						
Sodium		NA	NA	NA	NA	NA	146 B	102 B	272	227 B	391 B	NA	NA						
Thallium		NA	NA	NA	NA	NA	<0.800	< 0.960	<0.810	< 0.730	<0.800	NA	NA						
Vanadium		NA	NA	NA	NA	NA	12.6 E	17.3 E	7.20 BE	18.9	6.70 B	NA	NA						
Zinc	10,000	NA	NA	NA	NA	NA	72.9	60.9	55.8	114 E	76.7 E	NA	NA						
Detected Miscellaneous													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
Diesel Range Organics [C10-C28]		5,800	300	80	17,000	860	690	170	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range Organics [C6-C10]		0.45	< 0.29	<0.28	0.076 J	< 0.37	< 0.33	<0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		NonIgnitable	NonIgnitable	Nonlgnitable	NonIgnitable	NonIgnitable	NonIgnitable	NonIgnitable	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		7.32 HF	7.18 HF	8.19 HF	7.28 HF	7.87 HF	8.11 HF	7.76 HF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		632	494	228	6,540	<262	<217	868	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1 REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS

Location ID:	6 NYCRR PART 375	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	V-14	V-14-2	V-15	V-16	V-17
Sample Depth(Feet):	Industrial	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	17.5	17.5	17.5	17.5	17.5
Date Collected:	Use SCOs	11/23/01	12/27/01	11/13/01	11/13/01	10/30/01	10/30/01	10/25/01	10/20/01	10/22/01	10/23/01	10/23/01	10/24/01	11/26/01	01/04/02	01/04/02	01/04/02	01/04/02	01/04/02
Soil Removed at San	•																		
Soil Stabilized at Sam Detected PCBs	ple Location :	:																	<u> </u>
Aroclor-1242		NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Aroclor-1248		NA.	NA.	NA.	NA	NA NA	NA	NA.	NA	NA NA	NA NA	NA.	NA	NA NA	NA.	NA.	NA.	NA.	NA.
Aroclor-1254		NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected VOCs	•	•		•		•				•	•			•	•		•	•	
2-Butanone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	89	< 0.010	< 0.010	< 0.0090	< 0.0090	< 0.010	< 0.010	<0.012	< 0.011	< 0.014	0.0060 J	< 0.010	< 0.012	< 0.012	1.1	1.8	0.076	0.0040 J	< 0.0050
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	780	<0.010	<0.010	<0.0090	<0.0090	<0.010	<0.010	<0.012	<0.011	<0.014	<0.012	<0.010	<0.012	<0.012	9.3	2.5	0.16	0.0040 J	<0.0050
Methylene Chloride	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	1,000	<0.010	<0.010	<0.0090	<0.0090	0.0020 J	<0.010	0.0030 J	<0.011	<0.014	0.0090 J	0.0030 J	<0.012	<0.012	12	7.7	0.44	0.012	<0.0050
Toluene Xylenes (total)	1,000	<0.010	<0.010	<0.0090	<0.0090	<0.010	<0.010	<0.012	<0.011	<0.014	0.0090 J	<0.010	<0.012	<0.012	50	33	2.6	0.012	<0.0050
Total BTEX	1,000	<0.010	<0.010	<0.0090	<0.0090	0.0020 J	<0.010	0.0030 J	<0.011	<0.014	0.011 J	0.0030 J	<0.012	<0.012	72	45	3.3	0.036 0.078 J	<0.0050
Total VOCs		<0.010	<0.010	<0.0090	<0.0090	0.0020 J	<0.010	0.0030 J	<0.011	<0.014	0.026 J	0.0030 J	<0.012	<0.012	72	45	3.3	0.078 J	<0.0050
Detected SVOCs		Q0.010	VO.010	40.0000	40.0000	0.00200	V0.010	0.0000 0	V0.011	V0.014	0.0200	0.0000 0	Q0.012	Q0.012		40	0.0	0.0700	40.0000
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene		NA.	NA.	NA.	NA	NA NA	NA.	NA.	NA.	NA NA	NA	NA.	NA	NA NA	NA.	NA	NA.	NA.	NA
2-Methylnaphthalene		<0.64	<0.67 J	<0.61	<0.62	<0.68	<0.65	<0.78	<0.76	<0.95	0.82	<0.65	<0.78	<0.81	150	66	150	5.7	0.19 J
2-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	1,000	0.30 J	< 0.67	0.080 J	< 0.62	<0.68	< 0.65	<0.78	0.12 J	< 0.95	<0.81	< 0.65	<0.78	<0.81	28 J	11 J	20 J	1.2	0.096 J
Acenaphthylene	1,000	< 0.64	< 0.67	<0.61	0.10 J	<0.68	< 0.65	<0.78	< 0.76	< 0.95	0.16 J	< 0.65	<0.78	<0.81	100	75	170	7.5	0.54 J
Anthracene	1,000	0.44 J	< 0.67	1.3	0.17 J	0.18 J	< 0.65	0.11 J	0.45 J	< 0.95	0.17 J	<0.65	<0.78	<0.81	68	57	110	7.1	0.75 J
Benzo(a)anthracene	11	1.1	< 0.67	0.62	0.69	0.39 J	< 0.65	0.12 J	2.3 J	<0.95	0.11 J	0.25 J	<0.78	<0.81	40 J	30	42 J	3.5	1.3 J
Benzo(a)pyrene	1.1	0.82	< 0.67	0.40 J	0.61	0.29 J	<0.65	<0.78	2.1 J	<0.95	<0.81	0.40 J	<0.78	<0.81	31 J 17 J	19 15	31 J	2.7	1.1 J
Benzo(b)fluoranthene	1,000	1.1 0.45 J	< 0.67	0.28 J 0.18 J	0.50 J 0.22 J	0.27 J 0.14 J	<0.65 <0.65	<0.78 <0.78	2.0 J 0.76 J	<0.95 <0.95	<0.81 <0.81	0.35 J 0.33 J	<0.78 <0.18 J	<0.81 <0.81	<40	5.0 J	21 J 9.9 J	2.0 0.87 J	0.10 J 0.43 J
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1,000	0.45 J	<0.67 <0.67	0.18 J	0.69	0.14 J	<0.65	0.10 J	1.8 J	<0.95	<0.81	0.33 J 0.41 J	<0.18 3	<0.81	28 J	21	34 J	2.6	0.43 J
bis(2-Ethylhexyl)phthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate		NA.	NA.	NA.	NA NA	NA NA	NA	NA.	NA	NA NA	NA	NA.	NA	NA NA	NA.	NA NA	NA.	NA	NA NA
Carbazole		NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA.
Chrysene	110	1.2	0.069 J	0.60 J	0.65	0.37 J	0.075 J	0.12 J	2.1 J	<0.95	0.11 J	0.27 J	<0.78	<0.81	35 J	23	38 J	3.0	1.2 J
Dibenzo(a,h)anthracene	1.1	0.11 J	< 0.67	< 0.61	< 0.62	< 0.68	< 0.65	<0.78	0.15 J	< 0.95	<0.81	0.078 J	<0.78	< 0.81	<40	<13	<42	0.27 J	0.11 J
Dibenzofuran	1,000	0.086 J	< 0.67	< 0.61	< 0.62	< 0.68	< 0.65	<0.78	< 0.76	< 0.95	0.33 J	< 0.65	<0.78	< 0.81	38 J	33	71	4.0	0.19 J
Diethylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	1,000	0.44 J	0.10 J	1.9	1.2	0.76	0.088 J	0.26 J	4.0 J	< 0.95	0.21 J	0.34 J	<0.78	<0.81	100	67	130	8.7	2.7 J
Fluorene	1,000	0.21 J	< 0.67	0.40 J	0.067 J	<0.68	< 0.65	<0.78	0.11 J	< 0.95	<0.81	< 0.65	<0.78	<0.81	83	57	110	6.8	0.46 J
Indeno(1,2,3-cd)pyrene	11	0.52 J	< 0.67	0.15 J	0.31 J	0.18 J	< 0.65	<0.78	1.1 J	< 0.95	<0.81	0.24 J	<0.78	<0.81	11 J	6.4 J	14 J	1.1 J	0.53 J
Naphthalene	1,000	0.16 J	< 0.67	< 0.61	0.096 J	<0.68	< 0.65	<0.78	0.083 J	< 0.94	1.4	0.070 J	< 0.76	0.81	470	260 E	600	15	0.65 J
Phenanthrene	1,000	0.43 J	< 0.67	2.7	0.56 J	0.33 J	< 0.65	0.24 J	1.3	< 0.95	0.45 J	< 0.65	<0.78	<0.81	200	100	210	13	1.4 J
Phenol	1,000	NA 4.0	NA 0.44 l	NA 0.0	NA 1.4	NA 0.50 I	NA 0.000 I	NA 0.00 I	NA 2.0.1	NA 0.00 I	NA 0.44 I	NA 0.00 I	NA 0.45 I	NA 0.44	NA 07	NA 40	NA 74	NA	NA 0.4
Pyrene Total PAHe	1,000	1.8	0.14 J	2.2	1.4	0.52 J	0.068 J	0.22 J	3.3 J	0.22 J	0.14 J	0.36 J	0.15 J	0.11 J	87 4 500 J	46	74	5.5	2.1 J
Total PAHs		10 J	0.31 J	11 J 11 J	7.3 J	3.7 J	0.23 J	1.2 J	22 J	0.22 J	3.6 J	3.1 J	0.15 J	0.92 J	1,500 J	860 J	1,800 J	87 J	15 J
Total SVOCs		10 J	0.31 J	IIJ	7.3 J	3.7 J	0.23 J	1.2 J	22 J	0.22 J	3.9 J	3.1 J	0.15 J	0.92 J	1,500 J	890 J	1,800 J	91 J	15 J

TABLE 1 REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS

Location ID: Sample Depth(Feet):	6 NYCRR PART 375 Industrial	V-1 7.5	V-2 7.5	V-3 7.5	V-4 7.5	V-5 7.5	V-6 7.5	V-7 7.5	V-8 7.5	V-9 7.5	V-10 7.5	V-11 7.5	V-12 7.5	V-13 7.5	V-14 17.5	V-14-2 17.5	V-15 17.5	V-16 17.5	V-17 17.5
Date Collected:	Use SCOs	11/23/01	12/27/01	11/13/01	11/13/01	10/30/01	10/30/01	10/25/01	10/20/01	10/22/01	10/23/01	10/23/01	10/24/01	11/26/01	01/04/02	01/04/02	01/04/02	01/04/02	01/04/02
Soil Removed at San	nple Location:																		i
Soil Stabilized at Sam	ple Location :																		
Detected Pesticides									U U										
4,4'-DDD	180	NA	NA	NA	NA	NA	NA	NA	NA	NA									
4,4'-DDE	120	NA	NA	NA	NA	NA	NA	NA	NA	NA									
4,4'-DDT	94	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Aldrin	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Alpha-Chlordane	47	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Beta-BHC	14	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Delta-BHC	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Dieldrin	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Endosulfan II	920	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Endosulfan Sulfate	920	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Endrin	410	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Endrin Ketone		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Gamma-Chlordane		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Heptachlor	29	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Methoxychlor		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Detected Inorganics																			
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Arsenic	16	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Barium	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Beryllium	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Cadmium	60	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Copper	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Cyanide	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Lead	3,900	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA
Magnesium	10.000	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA
Manganese	5.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Mercury Nickel	10.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Potassium	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Selenium	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Silver	6.800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Sodium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Zinc	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Detected Miscellaneous	10,000	1 17/1	14/1	1 17/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	
Diesel Range Organics [C10-C28]		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Gasoline Range Organics [C6-C10]		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Ignitability		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Total Sulfur		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
i otai ouiitii		INA	IVA	INA	IVA	INA	IVA	INA	INA	INA	INA	INA	IVA						

TABLE 1 REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Notes:

- 1. Samples were collected by ARCADIS on the dates indicated.
- PCBs = Polychlorinated Biphenyls.
- 3. VOCs = Target Compound List (TCL) Volatile Organic Compounds.
- 4. BTEX = Benzene, toluene, ethylbenzene and xylenes.
- 5. SVOCs = TCL Semi-Volatile Organic Compounds.
- 6. PAHs = Polynuclear aromatic hydrocarbons.
- 7. Inorganics = Target Analyte List (TAL) Metals and Cyanide.
- 8. Samples were analyzed by TestAmerica Laboratories, Inc. (TestAmerica) located in Shelton, Connecticut for:
 - PCBs using United States Environmental Protection Agency (USEPA) SW-846 Method 8082.
 - VOCs/BTEX using USEPA SW-846 Method 8260.
 - SVOCs/PAHs using USEPA SW-846 Method 8270.
 - Pesticides using USEPA SW-846 Method 8080.
 - Inorganics using USEPA SW-846 Methods 6010, 7471 and 9012 or 335.4.
- 9. Only those constituents detected in one or more samples are summarized.
- 10. All concentrations reported in dry weight parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 11. Field duplicate sample results are presented in brackets.
- 12. Data qualifiers are defined as follows:
 - < Constituent not detected at a concentration above the reported detection limit.
 - B (Inorganic) Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
 - B (Organic) Compound was found in blank.
 - E (Inorganic) Serial dilution results not within 10%. Applicable only if analyte concentration is at least 50X the instrument detection limit in original sample.
 - E (Organic) Indicates the linear range of exceedance of instrument.
 - J Indicates that the associated numerical value is an estimated concentration.
 - N The spike recovery exceeded the upper or lower control limits.
 - R Data was rejected due to a deficiency in the data generation process.
- 13. 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) are from Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR) Part 375-6.8(b), effective December 14, 2006.
- 14. Shading indicates that the result exceeds the 6 NYCRR Part 375 Industrial Use SCO.
- 15. --= No 6 NYCRR Part 375 SCO listed.
- 16. NA = Not Analyzed.
- 17. Results have been validated in accordance with USEPA National Functional Guidelines of October 1999 and July 2002.

Location ID:	NYSDEC Part		SB-1	SB-3	SB-7	SB-9	SB-10	SB-11	SB-12	SB-13	SB-13	SB-14	SB-15	SB-16	SB-16
Sample Depth(Feet):	371 TCLP		16 - 18	14 - 16	20 - 22	6 - 8	10 - 12	12 - 14	6 - 8	14 - 16	38 - 40	8 - 10	8 - 10	2 - 4	28 - 30
Date Collected:	Criteria	Units	02/19/98	02/27/98	02/26/98	02/24/00	02/24/00	02/28/00	02/28/00	03/15/00	03/15/00	02/24/00	03/02/00	03/03/00	03/03/00
Soil Sample L	ocation within IS:	S Limits:													
PCBs															
Aroclor-1016	= =	mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Aroclor-1221	= =	mg/kg	< 0.0670	< 0.0670	< 0.0670	NA									
Aroclor-1232	= =	mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Aroclor-1242	= =	mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Aroclor-1248	= =	mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Aroclor-1254		mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Aroclor-1260	= =	mg/kg	< 0.0330	< 0.0330	< 0.0330	NA									
Total PCBs	= =	mg/kg	< 0.0670	< 0.0670	< 0.0670	NA									
VOCs-TCLP															*
1,1-Dichloroethene	700	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
1,2-Dichloroethane	500	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	<10	<10	<10	4.0 J	<10	<10	<10	<5.0	<5.0	3.0 JB	9.0 JB	3.0 J	5.0 J
Benzene	500	ug/L	<5.0	<5.0	<5.0	<5.0	2.0 JT	6.0 T	0.50 JT	<5.0	<5.0	33 T	0.70 JT	0.90 JT	14 T
Carbon Tetrachloride	500	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
Chlorobenzene	100,000	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	<5.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	700	ug/L	<5.0	8.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	500	ug/L	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	200	ug/L	<10	<10	<10	<10	<5.0	<10	<10	<5.0	<5.0	<10	<5.0	<5.0	<5.0
SVOCs-TCLP															
1,4-Dichlorobenzene	7,500	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
2,4,5-Trichlorophenol	400,000	ug/L	<50	<50	<50	<100	<100	<100	<100	<120	<120	<200	<10	<10	<10
2,4,6-Trichlorophenol	2,000	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
2,4-Dinitrotoluene	130	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
2-Methylphenol	200,000	ug/L	<10	<10	<10	<20	<20	22	<20	<50	<50	63	<10	2.0 J	220
4-Methylphenol	200,000	ug/L	<10	<10	<10	0.80 J	<20	29	<20	<50	<50	150	<10	4.0 J	450
Hexachlorobenzene	130	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
Hexachlorobutadiene	500	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
Hexachloroethane	3,000	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
Nitrobenzene	2,000	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	<40	<10	<10	<10
Pentachlorophenol	100,000	ug/L	<50	<50	<50	<100	<100	<100	<100	<120	<120	<200	<50	<50	<50
Pyridine	5,000	ug/L	<10	<10	<10	<20	<20	<20	<20	<50	<50	1.0 J	<10	<10	18 J

Location ID:	NYSDEC Part		SB-1	SB-3	SB-7	SB-9	SB-10	SB-11	SB-12	SB-13	SB-13	SB-14	SB-15	SB-16	SB-16
Sample Depth(Feet):	371 TCLP		16 - 18	14 - 16	20 - 22	6 - 8	10 - 12	12 - 14	6 - 8	14 - 16	38 - 40	8 - 10	8 - 10	2 - 4	28 - 30
Date Collected:	Criteria	Units	02/19/98	02/27/98	02/26/98	02/24/00	02/24/00	02/28/00	02/28/00	03/15/00	03/15/00	02/24/00	03/02/00	03/03/00	03/03/00
Soil Sample L	ocation within IS	S Limits:													
Pesticides-TCLP													•		
Chlordane (technical)	30	ug/L	NA												
Endrin	20	ug/L	NA												
Gamma-BHC (Lindane)	400	ug/L	NA												
Heptachlor	8	ug/L	NA												
Heptachlor Epoxide	8	ug/L	NA												
Methoxychlor	10,000	ug/L	NA												
Toxaphene	500	ug/L	NA												
Herbicides-TCLP															
2,4,5-TP	1,000	ug/L	NA												
2,4-D	10,000	ug/L	NA												
Metals-TCLP															
Antimony	= =	ug/L	NA												
Arsenic	5,000	ug/L	<40	<40	<40	21	3.2 B	3.6 B	<3.0	2.7 B	5.7 B	5.0 B	4.6 B	14	<3.0
Barium	100,000	ug/L	370	510	290	220	220	310	220	150 B	190 B	330	190 B	170 B	200 B
Beryllium		ug/L	NA												
Cadmium	1,000	ug/L	<2.0	<2.0	<2.0	4.0 B	1.0 B	<1.0	<1.0	< 0.30	< 0.30	1.3 B	<1.0	1.9 B	<1.0
Chromium	5,000	ug/L	<6.0	8.6 B	7.9 B	<1.0	5.4 B	<1.0	20	3.7 B	<2.2	1.2 B	5.9 B	39	3.8 B
Lead	5,000	ug/L	<22	<22	<22	6.7	<2.0	3.0 B	<2.0	<2.3	<2.3	4.3	3.5	3,300	15
Mercury	200	ug/L	<2.0	<2.0	<2.0	<1.0	12	<1.0	<1.0	<10	<10	<1.0	1.1 BN	1.5 BN	1.6 BN
Nickel		ug/L	NA												
Selenium	1,000	ug/L	<48	<48	<48	6.6	17	6.4	9.0	6.5	<4.0	12	9.5 N	11 N	8.0 N
Silver	5,000	ug/L	<2.0	<2.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.9	<1.9	<1.0	<1.0	<1.0	<1.0
Thallium		ug/L	NA												
Vanadium		ug/L	NA												
Zinc		ug/L	NA												
Miscellaneous															
BTU		BTU/lb	NA												
DRO (C10-C28)		mg/kg	NA												
GRO (C6-C10)		mg/kg	NA												
рН		SU	NA												
Total Sulfur		mg/kg	NA												
Waste Characterization															
Cyanide, Reactive		mg/kg	NA												
Ignitability		°F	NA												
Ignitability		mm/sec	NA												
Sulfide, Reactive		mg/kg	NA												

Location ID: Sample Depth(Feet): Date Collected:	NYSDEC Part 371 TCLP	Units	SB-17 2 - 4 02/29/00	SB-17 14 - 16 02/29/00	SB-18 2 - 4 03/16/00	SB-19 10 - 12 03/16/00	SB-19 26 - 28 03/16/00	SB-20 18 - 20 02/22/00	SB-21 16 - 18 02/22/00	SB-21 34 - 36 02/22/00	SB-22 14 - 16 03/06/00	SB-22 42 - 44 03/06/00	SB-24 12 - 14 03/20/00	SB-24 34 - 36 03/20/00	SB-25 12 - 14 03/17/00
	Criteria ocation within ISS		02/29/00	02/29/00	03/16/00	03/16/00	03/16/00	02/22/00	02/22/00	02/22/00	03/06/00	03/06/00	03/20/00	03/20/00	03/17/00
PCBs	ocation within 15	5 Limits:													
		ma/ka	NA	NIA	NIA	NIA	NIA	NIA	NΙΔ	NIA	NIA	NIA	NIA	NΙΔ	NIA
Aroclor-1016		mg/kg	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1221 Aroclor-1232		mg/kg	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		mg/kg	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1242		mg/kg					NA NA		NA NA						
Aroclor-1248		mg/kg	NA	NA	NA	NA		NA		NA NA	NA	NA	NA	NA	NA
Aroclor-1254		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs-TCLP															
1,1-Dichloroethene	700	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	<10	3.0 JB	<5.0	<5.0	<5.0	4.0 JB	<10	<10	3.0 J	4.0 J	<5.0	<5.0	<5.0
Benzene	500	ug/L	<5.0	0.40 JT	2.4 J	<5.0	7.1	0.40 JT	<5.0	3.0 JT	9.0 T	3.0 JT	<5.0	8.5	<5.0
Carbon Tetrachloride	500	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	700	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	500	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	200	ug/L	<10	<10	<5.0	<5.0	<5.0	<10	<10	<10	<5.0	<5.0	<5.0	<5.0	<5.0
SVOCs-TCLP															
1,4-Dichlorobenzene	7,500	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
2,4,5-Trichlorophenol	400,000	ug/L	<100	<100	<120	<120	<120	<100	<100	<100	<10	<10	<120	<120	<120
2,4,6-Trichlorophenol	2,000	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
2,4-Dinitrotoluene	130	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
2-Methylphenol	200,000	ug/L	<20	<20	<50	<50	120	<20	<20	<20	1.0 J	0.30 J	120	48 J	120
4-Methylphenol	200,000	ug/L	<20	0.60 J	<50	<50	<50	1.0 J	<20	<20	1.0 J	<10	<50	<50	<50
Hexachlorobenzene	130	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
Hexachlorobutadiene	500	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
Hexachloroethane	3,000	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
Nitrobenzene	2,000	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50
Pentachlorophenol	100,000	ug/L	<100	<100	<120	<120	<120	<100	<100	<100	<50	<50	<120	<120	<120
Pyridine	5,000	ug/L	<20	<20	<50	<50	<50	<20	<20	<20	<10	<10	<50	<50	<50

Location ID:	NYSDEC Part		SB-17	SB-17	SB-18	SB-19	SB-19	SB-20	SB-21	SB-21	SB-22	SB-22	SB-24	SB-24	SB-25
Sample Depth(Feet):	371 TCLP		2 - 4	14 - 16	2 - 4	10 - 12	26 - 28	18 - 20	16 - 18	34 - 36	14 - 16	42 - 44	12 - 14	34 - 36	12 - 14
Date Collected:	Criteria	Units	02/29/00	02/29/00	03/16/00	03/16/00	03/16/00	02/22/00	02/22/00	02/22/00	03/06/00	03/06/00	03/20/00	03/20/00	03/17/00
	ocation within IS	S Limits:													
Pesticides-TCLP															
Chlordane (technical)	30	ug/L	NA												
Endrin	20	ug/L	NA												
Gamma-BHC (Lindane)	400	ug/L	NA												
Heptachlor	8	ug/L	NA												
Heptachlor Epoxide	8	ug/L	NA												
Methoxychlor	10,000	ug/L	NA												
Toxaphene	500	ug/L	NA												
Herbicides-TCLP															
2,4,5-TP	1,000	ug/L	NA												
2,4-D	10,000	ug/L	NA												
Metals-TCLP															
Antimony		ug/L	NA												
Arsenic	5,000	ug/L	<3.0	4.3 B	3.4 B	<2.5	<2.5	6.5 B	3.3 B	5.7 B	7.3 B	8.1 B	6.8 J	3.1 B	<2.5
Barium	100,000	ug/L	330	840	260	52	370	420	480	430	250	850	520	800	250
Beryllium		ug/L	NA												
Cadmium	1,000	ug/L	<1.0	<1.0	< 0.30	< 0.30	< 0.30	<1.0	<1.0	<1.0	<1.0	1.3 B	< 0.30	0.34 B	< 0.30
Chromium	5,000	ug/L	3.6 B	2.3 B	<2.2	4.7 B	<2.2	<1.0	2.0 B	<1.0	7.6 B	10	2.4 B	<2.2	<2.2
Lead	5,000	ug/L	2.7 B	3.0 B	<2.3	<2.3	<2.3	4.7	5.6	6.2	7.7	13	<2.3	<2.3	<2.3
Mercury	200	ug/L	16	17	<10	<10	<10	<1.0	<1.0	<1.0	1.5 BN	1.5 BN	<10	<10	<10
Nickel		ug/L	NA												
Selenium	1,000	ug/L	7.8	5.4	<4.0	<4.0	<4.0	5.1	7.9	8.2	12 N	<3.0 N	4.5 B	<4.0	<4.0
Silver	5,000	ug/L	<1.0	<1.0	<1.9	<1.9	<1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.9	<1.9	<1.9
Thallium		ug/L	NA												
Vanadium		ug/L	NA												
Zinc		ug/L	NA												
Miscellaneous															
BTU		BTU/lb	NA												
DRO (C10-C28)		mg/kg	NA												
GRO (C6-C10)		mg/kg	NA												
pH		SU	NA												
Total Sulfur		mg/kg	NA												
Waste Characterization															
Cyanide, Reactive		mg/kg	NA												
Ignitability		°F	NA												
Ignitability		mm/sec	NA												
Sulfide, Reactive		mg/kg	NA												

Location ID: Sample Depth(Feet): Date Collected:	NYSDEC Part 371 TCLP Criteria	Units	SB-26 14 - 16 02/24/00	SB-26 26 - 28 02/24/00	SB-27 12 - 14 03/02/00	SB-27 18 - 20 03/02/00	SB-28 14 - 16 03/01/00	SB-29 2 - 4 03/01/00	SB-29 28 - 30 03/01/00	SB-30 14 - 16 03/13/00	SB-31 10 - 12 03/07/00	SB-31 12 - 14 03/07/00	SB-32 12 - 14 03/08/00	SB-32 24 - 26 03/08/00
	ocation within IS	S Limits:												
PCBs														
Aroclor-1016		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1242		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOCs-TCLP														
1,1-Dichloroethene	700	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	3.0 JB [3.0 JB]	<10	4.0 JB	4.0 JB	3.0 JB	4.0 JB	2.0 JB	<5.0	4.0 JB	5.0 JB	3.0 JB	9.0 JB
Benzene	500	ug/L	0.20 JT [0.40 JT]	2.0 JT	0.90 JT	2.0 JT	<5.0	0.80 JT	2.0 JT	<5.0	1.0 JT	1.0 JT	0.20 JT	9.0 JT
Carbon Tetrachloride	500	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	0.40 J	<5.0	<5.0	<5.0	0.40 J	<5.0
Tetrachloroethene	700	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	0.60 J	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	500	ug/L	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	200	ug/L	<10 [<10]	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
SVOCs-TCLP														,
1,4-Dichlorobenzene	7,500	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
2,4,5-Trichlorophenol	400,000	ug/L	<100 [<100]	<100	<50	<50	<100	<100	<100	<120	<10	<10	<10	<10
2,4,6-Trichlorophenol	2,000	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
2,4-Dinitrotoluene	130	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
2-Methylphenol	200,000	ug/L	<20 [<20]	<20	0.50 J	3.0 J	<20	<20	0.40 J	120	0.30 J	0.70 J	0.60 J	2.0 J
4-Methylphenol	200,000	ug/L	<20 [<20]	0.50 J	1.0 J	6.0 J	<20	<20	0.90 J	<50	0.70 J	2.0 J	2.0 J	3.0 J
Hexachlorobenzene	130	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
Hexachlorobutadiene	500	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
Hexachloroethane	3,000	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
Nitrobenzene	2,000	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10
Pentachlorophenol	100,000	ug/L	<100 [<100]	<100	<10	<10	<100	<100	<100	<120	<50	<50	<50	<50
Pyridine	5,000	ug/L	<20 [<20]	<20	<10	<10	<20	<20	<20	<50	<10	<10	<10	<10

Location ID:	NYSDEC Part		SB-26	SB-26	SB-27	SB-27	SB-28	SB-29	SB-29	SB-30	SB-31	SB-31	SB-32	SB-32
Sample Depth(Feet):	371 TCLP		14 - 16	26 - 28	12 - 14	18 - 20	14 - 16	2 - 4	28 - 30	14 - 16	10 - 12	12 - 14	12 - 14	24 - 26
Date Collected:	Criteria	Units	02/24/00	02/24/00	03/02/00	03/02/00	03/01/00	03/01/00	03/01/00	03/13/00	03/07/00	03/07/00	03/08/00	03/08/00
	ocation within IS	S Limits:												
Pesticides-TCLP														
Chlordane (technical)	30	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	20	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	400	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toxaphene	500	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides-TCLP														
2,4,5-TP	1,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals-TCLP														
Antimony		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5,000	ug/L	5.2 B [7.0 B]	4.5 B	<3.0	3.6 B	3.6 B	5.5 B	<3.0	2.9 B	8.4 B	4.9 B	<3.0	6.4 B
Barium	100,000	ug/L	370 [840]	420	430	470	690	760	210	570	180 B	260	730	670
Beryllium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	1,000	ug/L	<1.0 [<1.0]	<1.0	<1.0	<1.0	<1.0	2.2 B	<1.0	< 0.30	<1.0	<1.0	<1.0	<1.0
Chromium	5,000	ug/L	1.3 B [5.5 B]	<1.0	<1.0	<1.0	1.4 B	<1.0	<1.0	<2.2	1.8 B	<1.0	1.2 B	<1.0
Lead	5,000	ug/L	4.9 [5.0]	3.4	5.6	3.7	3.2	28	5.0	<2.3	7.8	9.0	5.6	4.8
Mercury	200	ug/L	<1.0 [23]	<1.0	<1.0 N	<1.0 N	8.6	<1.0	1.4 B	<10	1.3 BN	1.1 BN	1.2 BN	1.2 BN
Nickel		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	1,000	ug/L	8.5 [7.6]	<3.0	7.7 N	6.5 N	5.0 B	7.6	3.0 B	<4.0	6.1 N	5.2 N	8.2 N	10 N
Silver	5,000	ug/L	<1.0 [<1.0]	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.9	<1.0	<1.0	<1.0	<1.0
Thallium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous														
BTU		BTU/lb	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C10-C28)	1	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GRO (C6-C10)	-	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН		SU	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur	-	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Waste Characterization														
Cyanide, Reactive		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		°F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability	-	mm/sec	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide, Reactive		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID: Sample Depth(Feet):	NYSDEC Part 371 TCLP		SB-33 10 - 12	SB-34 12 - 14	SB-34 18 - 20	SB-35 16 - 18	SB-36 18 - 20	SB-37 20 - 22	SB-38 16 - 18	SB-39 6 - 8	SB-39 20 - 22	SB-40 6 - 8	SB-40 20 - 22	SB-41 20 - 22
Date Collected:	Criteria	Units	03/14/00	03/06/00	03/07/00	03/08/00	03/15/00	03/09/00	03/13/00	03/09/00	03/10/00	03/23/00	03/23/00	03/22/00
Soil Sample L	ocation within IS:	S Limits:					Х		Х	Х	X		Х	
PCBs														
Aroclor-1016		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1221		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1232		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1242		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1248		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1254		mg/kg	NA	NA	NA	NA	NA	NA						
Aroclor-1260		mg/kg	NA	NA	NA	NA	NA	NA						
Total PCBs		mg/kg	NA	NA	NA	NA	NA	NA						
VOCs-TCLP														
1,1-Dichloroethene	700	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	<21	4.0 J [5.0 JB]	3.0 JB	3.0 JB	7.0 JB	11 JB	<5.0 [<5.0]	6.0 JB	2.0 JB	<5.0	<5.0	<5.0
Benzene	500	ug/L	<21	13 T [<5.0]	1.0 JT	0.80 JT	6.0 JT	2.0 JT	<5.0 [<5.0]	0.70 JT	0.40 JT	<5.0	120	1.2 J
Carbon Tetrachloride	500	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	<21	<5.0 [<5.0]	<5.0	0.40 J	0.50 J	2.0 J	<5.0 [<5.0]	<5.0	0.30 J	<5.0	<5.0	<5.0
Tetrachloroethene	700	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	500	ug/L	<21	<5.0 [<5.0]	<5.0	<5.0	0.80 J	<5.0	<5.0 [<5.0]	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	200	ug/L	<21	<10 [<10]	<10	<10	<10	<10	<5.0 [<5.0]	<10	<10	<5.0	<5.0	<5.0
SVOCs-TCLP														
1,4-Dichlorobenzene	7,500	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
2,4,5-Trichlorophenol	400,000	ug/L	<120	<10 [<10]	<10	<10	<10	<10	<120 [<120]	<10	<10	<120	<120	<120
2,4,6-Trichlorophenol	2,000	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
2,4-Dinitrotoluene	130	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
2-Methylphenol	200,000	ug/L	120	<10 [<10]	<10	3.0 J	1.0 J	<10	120 [<50]	<10	<10	<50	<50	120
4-Methylphenol	200,000	ug/L	<50	0.40 J [<10]	0.40 J	9.0 J	4.0 J	0.50 J	<50 [<50]	0.70 J	<10	<50	<50	<50
Hexachlorobenzene	130	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
Hexachlorobutadiene	500	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
Hexachloroethane	3,000	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
Nitrobenzene	2,000	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50
Pentachlorophenol	100,000	ug/L	<120	<50 [<50]	<50	<50	<50	<50	<120 [<120]	<50	<50	<120	<120	<120
Pyridine	5,000	ug/L	<50	<10 [<10]	<10	<10	<10	<10	<50 [<50]	<10	<10	<50	<50	<50

Location ID:	NYSDEC Part		SB-33	SB-34	SB-34	SB-35	SB-36	SB-37	SB-38	SB-39	SB-39	SB-40	SB-40	SB-41
Sample Depth(Feet):	371 TCLP		10 - 12	12 - 14	18 - 20	16 - 18	18 - 20	20 - 22	16 - 18	6 - 8	20 - 22	6 - 8	20 - 22	20 - 22
Date Collected:	Criteria	Units	03/14/00	03/06/00	03/07/00	03/08/00	03/15/00	03/09/00	03/13/00	03/09/00	03/10/00	03/23/00	03/23/00	03/22/00
Soil Sample L	ocation within IS	S Limits:					Х		Х	Х	Х		Х	
Pesticides-TCLP											-			
Chlordane (technical)	30	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	20	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	400	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toxaphene	500	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides-TCLP														
2,4,5-TP	1,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals-TCLP														
Antimony		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5,000	ug/L	5.3 B	<3.0 [5.2 B]	4.6 B	8.0 B	11	<3.0	5.6 B [5.2 B]	3.8 B	<3.0	2.5 B	<2.5	4.4 B
Barium	100,000	ug/L	240	200 [160 B]	230	890	740	780	470 [500]	190 B	770	160 B	620	470
Beryllium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	1,000	ug/L	< 0.30	<1.0 [<1.0]	<1.0	<1.0	1.6 B	<1.0	<0.30 [<0.30]	<1.0	<1.0	0.88 B	< 0.30	<0.30
Chromium	5,000	ug/L	<2.2	1.5 B [1.5 B]	2.5 B	<1.0	10	<1.0	2.2 B [<2.2]	4.1 B	<1.0	3.9 B	2.7 B	<2.2
Lead	5,000	ug/L	<2.3	5.6 [5.9]	7.3	8.3	11	4.9	<2.3 [<2.3]	2.0 B	3.2	<2.3	<2.3	<2.3
Mercury	200	ug/L	<10	1.0 BN [1.1 BN]	1.2 BN	2.4 N	<1.0 N	1.1 BN	<10 [<10]	2.4 N	2.6 N	17 B	<10	<10
Nickel		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	1,000	ug/L	4.1 B	6.1 N [9.4 N]	10 N	11 N	13 N	8.5 N	4.9 B [7.3]	8.1 N	7.4 N	<4.0	<4.0	<4.0
Silver	5,000	ug/L	<1.9	<1.0 [<1.0]	<1.0	<1.0	<1.0	<1.0	<1.9 [<1.9]	<1.0	<1.0	<1.9	<1.9	<1.9
Thallium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous														
BTU		BTU/lb	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C10-C28)		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GRO (C6-C10)		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		SU	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Sulfur		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Waste Characterization											1	1	1	
Cyanide, Reactive		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		°F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		mm/sec	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide, Reactive		mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location ID:	NYSDEC Part		SB-42	SB-43	SB-44	SB-45	SB-46	SB-47	SB-48	SB-49	SB-49	SB-50	MW-3D	MW-4D
Sample Depth(Feet):	371 TCLP		20 - 22	20 - 22	24 - 26	20 - 22	22 - 24	20 - 22	16 - 18	10 - 12	18 - 20	16 - 18	18 - 20	21 - 23
Date Collected:	Criteria	Units	03/21/00	03/24/00	03/28/00	03/27/00	03/27/00	03/22/00	03/23/00	03/21/00	03/20/00	03/28/00	02/20/98	02/23/98
	ocation within IS:	S Limits:	Х					Х	X	Х	X			
PCBs														
Aroclor-1016		mg/kg	NA	NA	NA	<0.0330	<0.0330							
Aroclor-1221		mg/kg	NA	NA	NA	< 0.0670	< 0.0670							
Aroclor-1232		mg/kg	NA	NA	NA	<0.0330	<0.0330							
Aroclor-1242		mg/kg	NA	NA	NA	< 0.0330	< 0.0330							
Aroclor-1248		mg/kg	NA	NA	NA	< 0.0330	< 0.0330							
Aroclor-1254		mg/kg	NA	NA	NA	< 0.0330	< 0.0330							
Aroclor-1260		mg/kg	NA	NA	NA	< 0.0330	< 0.0330							
Total PCBs		mg/kg	NA	NA	NA	< 0.0670	< 0.0670							
VOCs-TCLP														
1,1-Dichloroethene	700	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
2-Butanone	200,000	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<10	<10
Benzene	500	ug/L	1.6 J	<780	10 J	<150	9.8 J	1.2 J	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Carbon Tetrachloride	500	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Chloroform	6,000	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Tetrachloroethene	700	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Trichloroethene	500	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<5.0	<5.0
Vinyl Chloride	200	ug/L	<5.0	<780	<44	<150	<14	<5.0	<5.0	<5.0 [<5.0]	<50	<5.0 [<14]	<10	<10
SVOCs-TCLP				•	•	•			-					
1,4-Dichlorobenzene	7,500	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
2,4,5-Trichlorophenol	400,000	ug/L	<120	<120	<120	<120	<120	<120	<120	<120 [<120]	<120	<120 [<120]	<50	<50
2,4,6-Trichlorophenol	2,000	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
2,4-Dinitrotoluene	130	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
2-Methylphenol	200,000	ug/L	120	<50	3.8 J	<50	11 J	120	<50	120 [<50]	120	<50 [<50]	<10	<10
4-Methylphenol	200,000	ug/L	<50	<50	2.4 J	<50	7.4 J	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
Hexachlorobenzene	130	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
Hexachlorobutadiene	500	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
Hexachloroethane	3,000	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
Nitrobenzene	2,000	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10
Pentachlorophenol	100,000	ug/L	<120	<120	<120	<120	<120	<120	<120	<120 [<120]	<120	<120 [<120]	<50	<50
Pyridine	5,000	ug/L	<50	<50	<50	<50	<50	<50	<50	<50 [<50]	<50	<50 [<50]	<10	<10

Location ID:	NYSDEC Part		SB-42	SB-43	SB-44	SB-45	SB-46	SB-47	SB-48	SB-49	SB-49	SB-50	MW-3D	MW-4D
Sample Depth(Feet): Date Collected:	371 TCLP Criteria	Units	20 - 22 03/21/00	20 - 22 03/24/00	24 - 26 03/28/00	20 - 22 03/27/00	22 - 24 03/27/00	20 - 22 03/22/00	16 - 18 03/23/00	10 - 12 03/21/00	18 - 20 03/20/00	16 - 18 03/28/00	18 - 20 02/20/98	21 - 23 02/23/98
	Location within IS		X	03/24/00	03/26/00	03/2//00	03/2//00	X	X	X	X	03/20/00	02/20/90	02/23/90
Pesticides-TCLP	LOCATION WITHIN 10	o Eminto.	Х					Х	χ	Α	Α			
Chlordane (technical)	30	ug/L	NA											
Endrin	20	ug/L	NA											
Gamma-BHC (Lindane)	400	ug/L	NA											
Heptachlor	8	ug/L	NA											
Heptachlor Epoxide	8	ug/L	NA											
Methoxychlor	10,000	ug/L	NA											
Toxaphene	500	ug/L	NA											
Herbicides-TCLP		_												
2,4,5-TP	1,000	ug/L	NA											
2,4-D	10,000	ug/L	NA											
Metals-TCLP	•								•			•		
Antimony		ug/L	NA											
Arsenic	5,000	ug/L	<2.5	<2.5	<2.5	<2.5	<2.5	4.1 B	<2.5	7.9 B [3.8 B]	4.1 B	<2.5 [<2.5]	<40	<40
Barium	100,000	ug/L	440	230	590	600	630	550	280	460 [510]	570	770 [300]	420	360
Beryllium		ug/L	NA											
Cadmium	1,000	ug/L	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30 [<0.30]	< 0.30	<0.30 [<0.30]	<2.0	<2.0
Chromium	5,000	ug/L	<2.2	<2.2	3.6 B	2.2 B	3.1 B	<2.2	<2.2	<2.2 [<2.2]	<2.2	<2.2 [<2.2]	<6.0	6.5 B
Lead	5,000	ug/L	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3 [<2.3]	<2.3	<2.3 [<2.3]	<22	<22
Mercury	200	ug/L	<10	<10	10 B	14 B	<10	<10	15 B	<10 [<10]	<10	<10 [<10]	<2.0	<2.0
Nickel		ug/L	NA											
Selenium	1,000	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0 [<4.0]	<4.0	4.3 B [5.2]	<48	50 B
Silver	5,000	ug/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9 [<1.9]	<1.9	<1.9 [<1.9]	<2.0	<2.0
Thallium		ug/L	NA											
Vanadium		ug/L	NA											
Zinc		ug/L	NA											
Miscellaneous														
BTU		BTU/lb	NA											
DRO (C10-C28)		mg/kg	NA											
GRO (C6-C10)		mg/kg	NA											
рН		SU	NA											
Total Sulfur		mg/kg	NA											
Waste Characterization														
Cyanide, Reactive		mg/kg	NA											
Ignitability		°F	NA											
Ignitability		mm/sec	NA											
Sulfide, Reactive		mg/kg	NA											

Location ID:	NYSDEC Part		MW-5D	MW-8D	T1	T3-A	SB-100	SB-101	SB-102	SB-103	SB-104	SB-105
Sample Depth(Feet):	371 TCLP		18 - 20	20 - 22	10 - 15	16 - 20	0-5	0-5	0-5	0-5	0-5	0-5
Date Collected:	Criteria	Units	02/18/98	02/17/98	07/01/01	07/01/01	08/27/10	08/24/10	08/27/10	08/25/10	08/24/10	08/25/10
Soil Sample L	ocation within IS	S Limits:					Х	Х	Х	Х	Х	Х
PCBs												
Aroclor-1016	= =	mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	< 0.0270	<0.0220	< 0.0310	< 0.0250	<0.0200	<0.0190
Aroclor-1221	= =	mg/kg	< 0.0670	<0.0670 [<0.0670]	< 0.0670	NA	<0.0270	<0.0220	< 0.0310	< 0.0250	<0.0200	< 0.0190
Aroclor-1232		mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	<0.0270	<0.0220	< 0.0310	< 0.0250	<0.0200	<0.0190
Aroclor-1242		mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	<0.0270	<0.0220	< 0.0310	< 0.0250	<0.0200	< 0.0190
Aroclor-1248		mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	<0.0270	< 0.0220	< 0.0310	< 0.0250	<0.0200	< 0.0190
Aroclor-1254		mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	< 0.0270	< 0.0220	< 0.0310	< 0.0250	<0.0200	< 0.0190
Aroclor-1260		mg/kg	< 0.0330	<0.0330 [<0.0330]	< 0.0330	NA	<0.0270	< 0.0220	0.0220 Jp	< 0.0250	<0.0200	< 0.0190
Total PCBs		mg/kg	<0.0670	<0.0670 [<0.0670]	< 0.0670	NA	<0.0270	<0.0220	0.0220 J	< 0.0250	<0.0200	<0.0190
VOCs-TCLP												
1,1-Dichloroethene	700	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	<10	<10	NA	NA	<10	<10	<10	1.5 J	<10	<10
Benzene	500	ug/L	<5.0	3.0 J	<5.0	0.40 JB	2.1 J	0.95 J	<5.0	1.2 J	<5.0	<5.0
Carbon Tetrachloride	500	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	<5.0	<5.0	NA	NA	1.1 J	0.75 JB	0.93 J	1.0 JB	0.82 JB	1.1 JB
Tetrachloroethene	700	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	4.3 J
Trichloroethene	500	ug/L	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	1.2 J	<5.0	<5.0
Vinyl Chloride	200	ug/L	<10	<10	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
SVOCs-TCLP												
1,4-Dichlorobenzene	7,500	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
2,4,5-Trichlorophenol	400,000	ug/L	<50	<50	NA	NA	<100	<100	<100	<100	<100	<100
2,4,6-Trichlorophenol	2,000	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
2,4-Dinitrotoluene	130	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
2-Methylphenol	200,000	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
4-Methylphenol	200,000	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
Hexachlorobenzene	130	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
Hexachlorobutadiene	500	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
Hexachloroethane	3,000	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
Nitrobenzene	2,000	ug/L	<10	<10	NA	NA	<20	<20	<20	<20	<20	<20
Pentachlorophenol	100,000	ug/L	<50	<50	NA	NA	<100	<100	<100	<100	<100	<100
Pyridine	5,000	ug/L	<10	<10	NA	NA	<40	<40	<40	<40	<40	<40

Location ID:	NYSDEC Part		MW-5D	MW-8D	T1	Т3-А	SB-100	SB-101	SB-102	SB-103	SB-104	SB-105
Sample Depth(Feet):	371 TCLP		18 - 20	20 - 22	10 - 15	16 - 20	0-5	0-5	0-5	0-5	0-5	0-5
Date Collected:	Criteria	Units	02/18/98	02/17/98	07/01/01	07/01/01	08/27/10	08/24/10	08/27/10	08/25/10	08/24/10	08/25/10
	ocation within IS	S Limits:					Х	Х	Х	Х	Х	X
Pesticides-TCLP							-	=				
Chlordane (technical)	30	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	20	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	400	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	8	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toxaphene	500	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides-TCLP												
2,4,5-TP	1,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	10,000	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals-TCLP			•									
Antimony		ug/L	NA	NA	NA	NA	<75	<75	<75	<75	<75	<75
Arsenic	5,000	ug/L	<40	<40	NA	NA	<75	<75	<75	<75	<75	<75
Barium	100,000	ug/L	400	55 B	NA	NA	220	93	140	300	250	350
Beryllium		ug/L	NA	NA	NA	NA	<25	<25	<25	<25	<25	<25
Cadmium	1,000	ug/L	<2.0	<2.0	NA	NA	<25	<25	5.4 J	<25	<25	<25
Chromium	5,000	ug/L	<6.0	2,300	NA	NA	<25	<25	<25	<25	<25	<25
Lead	5,000	ug/L	<22	51 B	NA	NA	<75	<75	<75	<75	<75	<75
Mercury	200	ug/L	<0.20	<2.0	NA	NA	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel		ug/L	NA	NA	NA	NA	10 J	18 J	45	11 J	7.7 J	8.2 J
Selenium	1,000	ug/L	<48	<48	NA	NA	<190	<190	<190	<190	<190	<190
Silver	5,000	ug/L	<2.0	2.0 B	NA	NA	<25	<25	<25	<25	<25	<25
Thallium		ug/L	NA	NA	NA	NA	<75	<75	<75	<75	<75	<75
Vanadium		ug/L	NA	NA	NA	NA	7.2 J	<25	<25	8.1 J	6.0 J	<25
Zinc		ug/L	NA	NA	NA	NA	<120	69 J	57 J	66 J	40 J	27 J
Miscellaneous												
BTU		BTU/lb	NA	NA	NA	NA	DNF	DNF	DNF	DNF	DNF	DNF
DRO (C10-C28)		mg/kg	NA	NA	NA	NA	370	990	190	5,800	300	80
GRO (C6-C10)		mg/kg	NA	NA	NA	NA	0.04 J	<0.32	<0.46	0.45	<0.29	<0.28
рН		SU	NA	NA	NA	NA	7.49 HF	7.41 HF	7.35 HF	7.32 HF	7.18 HF	8.19 HF
Total Sulfur		mg/kg	NA	NA	NA	NA	7,000	479	7,800	632	494	228
Waste Characterization												
Cyanide, Reactive	= =	mg/kg	NA	NA	NA	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ignitability		°F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ignitability		mm/sec	NA	NA	NA	NA	NonIgnitable	NonIgnitable	NonIgnitable	NonIgnitable	NonIgnitable	NonIgnitable
Sulfide, Reactive		mg/kg	NA	NA	NA	NA	<20	<20	<20	<20	<20	<20

Location ID:	NYSDEC Part		SB-106	SB-107	SB-107	SB-108	SB-108	SB-109	SCB-COMP	SCB-COMP	SCB-COMP
Sample Depth(Feet):	371 TCLP		0-5	0-5	0-5	0-5	0-5	0-5	1.5 - 4.5	1.5 - 8.5	4.5 - 8.5
Date Collected:	Criteria	Units	08/25/10	08/23/10	08/25/10	08/23/10	08/25/10	08/23/10	02/15/12	02/15/12	02/15/12
Soil Sample L	ocation within IS	S Limits:	Х			Х	Х				
PCBs		•				•			•		
Aroclor-1016		mg/kg	< 0.0230	NA	< 0.0250	NA	< 0.0220	< 0.0200	< 0.0390	<0.0480	< 0.0650
Aroclor-1221		mg/kg	< 0.0230	NA	< 0.0250	NA	< 0.0220	< 0.0200	< 0.0390	<0.0480	< 0.0650
Aroclor-1232		mg/kg	< 0.0230	NA	<0.0250	NA	<0.0220	< 0.0200	< 0.0390	<0.0480	< 0.0650
Aroclor-1242		mg/kg	<0.0230	NA	< 0.0250	NA	<0.0220	<0.0200	< 0.0390	<0.0480	< 0.0650
Aroclor-1248		mg/kg	< 0.0230	NA	< 0.0250	NA	< 0.0220	< 0.0200	< 0.0390	<0.0480	< 0.0650
Aroclor-1254		mg/kg	<0.0230	NA	< 0.0250	NA	<0.0220	<0.0200	0.130	0.100	< 0.0650
Aroclor-1260		mg/kg	< 0.0230	NA	0.0190 J	NA	0.0170 Jp	< 0.0200	< 0.0390	<0.0480	< 0.0650
Total PCBs		mg/kg	<0.0230	NA	0.0190 J	NA	0.0170 J	< 0.0200	0.130	0.100	< 0.0650
VOCs-TCLP											
1,1-Dichloroethene	700	ug/L	<5.0	<5.0	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	500	ug/L	<5.0	<5.0	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
2-Butanone	200,000	ug/L	1.2 J	1.3 J	NA	1.5 J	NA	<10	<5.0	<5.0	<5.0
Benzene	500	ug/L	0.89 J	3.6 J	NA	<5.0	NA	1.2 J	<5.0	<5.0	<5.0
Carbon Tetrachloride	500	ug/L	<5.0	<5.0	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	100,000	ug/L	<5.0	<5.0	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
Chloroform	6,000	ug/L	1.1 JB	0.72 JB	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	700	ug/L	<5.0	<5.0	NA	3.1 J	NA	<5.0	<5.0	<5.0	3.1 J
Trichloroethene	500	ug/L	<5.0	1.1 J	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	200	ug/L	<5.0	<5.0	NA	<5.0	NA	<5.0	<5.0	<5.0	<5.0
SVOCs-TCLP											
1,4-Dichlorobenzene	7,500	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
2,4,5-Trichlorophenol	400,000	ug/L	<100	NA	NA	NA	NA	<100	<67	<67	<67
2,4,6-Trichlorophenol	2,000	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
2,4-Dinitrotoluene	130	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
2-Methylphenol	200,000	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
4-Methylphenol	200,000	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
Hexachlorobenzene	130	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
Hexachlorobutadiene	500	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
Hexachloroethane	3,000	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
Nitrobenzene	2,000	ug/L	<20	NA	NA	NA	NA	<20	<33	<33	<33
Pentachlorophenol	100,000	ug/L	<100	NA	NA	NA	NA	<100	<67	<67	<67
Pyridine	5,000	ug/L	<40	NA	NA	NA	NA	<40	<67	<67	<67

Location ID:	NYSDEC Part		SB-106	SB-107	SB-107	SB-108	SB-108	SB-109	SCB-COMP	SCB-COMP	SCB-COMP
Sample Depth(Feet):	371 TCLP		0-5	0-5	0-5	0-5	0-5	0-5	1.5 - 4.5	1.5 - 8.5	4.5 - 8.5
Date Collected:	Criteria	Units	08/25/10	08/23/10	08/25/10	08/23/10	08/25/10	08/23/10	02/15/12	02/15/12	02/15/12
	_ocation within IS	S Limits:	Х			Х	Х				
Pesticides-TCLP			•					•		•	
Chlordane (technical)	30	ug/L	NA	NA	NA	NA	NA	NA	<8.3	<8.3	<8.3
Endrin	20	ug/L	NA	NA	NA	NA	NA	NA	< 0.33	<0.33	< 0.33
Gamma-BHC (Lindane)	400	ug/L	NA	NA	NA	NA	NA	NA	<0.17	<0.17	<0.17
Heptachlor	8	ug/L	NA	NA	NA	NA	NA	NA	<0.17	<0.17	<0.17
Heptachlor Epoxide	8	ug/L	NA	NA	NA	NA	NA	NA	<0.17	<0.17	<0.17
Methoxychlor	10,000	ug/L	NA	NA	NA	NA	NA	NA	<1.7	<1.7	<1.7
Toxaphene	500	ug/L	NA	NA	NA	NA	NA	NA	<17	<17	<17
Herbicides-TCLP											
2,4,5-TP	1,000	ug/L	NA	NA	NA	NA	NA	NA	< 0.33	< 0.33	< 0.33
2,4-D	10,000	ug/L	NA	NA	NA	NA	NA	NA	<3.3	<3.3	<3.3
Metals-TCLP											
Antimony		ug/L	<75	NA	<75	NA	<75	<75	NA	NA	NA
Arsenic	5,000	ug/L	<75	NA	<75	NA	<75	<75	<20	<20	<20
Barium	100,000	ug/L	300	NA	330	NA	630	460	190 B	150 B	69 B
Beryllium		ug/L	<25	NA	<25	NA	<25	<25	NA	NA	NA
Cadmium	1,000	ug/L	<25	NA	<25	NA	<25	<25	<5.0	<5.0	<5.0
Chromium	5,000	ug/L	<25	NA	<25	NA	12 J	<25	<20	<20	<20
Lead	5,000	ug/L	<75	NA	<75	NA	<75	<75	<10	<10	<10
Mercury	200	ug/L	<2.0	NA	<2.0	NA	<2.0	<2.0	0.094 B	0.061 B	<0.20
Nickel		ug/L	8.3 J	NA	7.5 J	NA	<25	<25	NA	NA	NA
Selenium	1,000	ug/L	<190	NA	<190	NA	<190	<190	16 B	<30	<30
Silver	5,000	ug/L	<25	NA	<25	NA	<25	<25	<30	<30	<30
Thallium		ug/L	<75	NA	<75	NA	<75	<75	NA	NA	NA
Vanadium		ug/L	<25	NA	<25	NA	5.0 J	<25	NA	NA	NA
Zinc		ug/L	120	NA	43 J	NA	55 J	110 J	NA	NA	NA
Miscellaneous											
BTU		BTU/lb	DNF	NA	DNF	NA	DNF	DNF	NA	NA	NA
DRO (C10-C28)		mg/kg	17,000	NA	860	NA	690	170	NA	NA	NA
GRO (C6-C10)		mg/kg	0.076 J	NA	< 0.37	NA	<0.33	<0.3	NA	NA	NA
рН		SU	7.28 HF	NA	7.87 HF	NA	8.11 HF	7.76 HF	7.6	7.8	8.4
Total Sulfur		mg/kg	6,540	NA	<262	NA	<217	868	NA	NA	NA
Waste Characterization											
Cyanide, Reactive		mg/kg	<0.5	NA	<0.5	NA	<0.5	<0.5	<1.2	<1.4	<1.9
Ignitability		°F	NA	NA	NA	NA	NA	NA	<200	<200	<200
Ignitability		mm/sec	NonIgnitable	NA	NonIgnitable	NA	NonIgnitable	NonIgnitable	NA	NA	NA
Sulfide, Reactive		mg/kg	<20	NA	<20	NA	<20	<20	6.8	2.5	<1.9

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Notes:

- 1. Samples were collected by ARCADIS on the dates indicated.
- 2. TCLP = Toxicity Characteristic Leaching Procedure.
- 3. ISS = in-situ soil solidification.
- 4. PCBs = Polychlorinated Biphenyls.
- 5. VOCs = Target Compound List (TCL) Volatile Organic Compounds.
- 6. SVOCs = TCL Semi-Volatile Organic Compounds.
- 7. Inorganics = Resource Conservation Recovery Act (RCRA) Metals and Cyanide.
- 8. DRO = Diesel range organics.
- 9. GRO = Gasoline range organics.
- 10. mg/kg = milligram per kilogram which is equivalent to parts per million.
- 11. ug/L = micrograms per liter which is equivalent to parts per billion.
- 12. BTU/lb = British Thermal Units (BTU) per pound.
- 13. SU = standard units.
- 14. ^OF = degrees Fahrenheit.
- 15. mm/sec = millimeters per second.
- 16. Samples were analyzed by TestAmerica Laboratories, Inc. (TestAmerica) located in Shelton, Connecticut using extraction by:
 - PCBs using United States Environmental Protection Agency (USEPA) SW-846 Methods 8082.
 - VOCs/BTEX using USEPA SW-846 Methods 1311 and 8260.
 - SVOCs/PAHs using USEPA SW-846 Methods 1311 and 8270.
 - Pesticides and herbicides using USEPA SW-846 Methods 1311 and 8081.
 - Herbicides using USEPA SW-846 Methods 1311 and 8151.
 - Inorganics using USEPA SW-846 Methods 1311 and 6010, 7471, and/or 335.4.
 - Heat of combustion by ASTM D240-87.
 - Diesel range organic (DRO) and gasoline range organics (GRO) using USEPA SW-846 Method 8015.
 - Ignitability using USEPA Method 1010 and 1030.
 - pH using USEPA Method 9045.
 - Total sulfur using USEPA Method 9038.
 - Reactive cyanide using USEPA Method 9012 and 7.3.
 - Reactive sulfide using USEPA Method 9034 and 7.3.
- 17. Only those constituents detected in one or more samples are summarized.
- 18. Field duplicate sample results are presented in brackets.
- 19. Data qualifiers are defined as follows:
 - < Constituent not detected at a concentration above the reported detection limit.
 - B (Inorganic) Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
 - B (Organic) Compound was found in blank.
 - J Indicates that the associated numerical value is an estimated concentration.
 - N The spike recovery exceeded the upper or lower control limits.
 - T Compound was found in blank.
 - DNF Did not fire.
 - HF Field parameter with a holding time of 15 minutes.
 - NI Non-ignitable.
 - p The percent relative difference between the primary and confirmation column/detector is >40%. The lower value is reported.
- 20. NA = Not Analyzed.
- 21. The data were not validated.

Lastin ID	NYSDEC TOGS 1.1.1		Basar	40		MW-1D				
Location ID: Date Collected:	Water Guidance Values	03/31/98	MW 05/20/98	-1S 10/24/00	04/21/03	03/31/98	05/20/98	-1D 10/25/00	04/21/03	
Detected Volatile Organics	Values	00/01/00	00/20/00	10/2 1/00	0 1/2 1/00	33/3//33	00/20/00	10/20/00	0 1/2 1/00	
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0	<10	<10	<10	<25	
1,1,2,2-Tetrachloroethane	5	<10	<10	<10	<5.0	<10	<10	<10	<25	
1,1,2-Trichloroethane	1	<10	<10	<10	<5.0	<10	<10	<10	<25	
1,1-Dichloroethane	5	<10	<10	<10	<5.0	<10	<10	<10	<25	
2-Butanone		<10	<10	3.0 J	<10	23	41	39	140	
2-Hexanone	50	<10	<10	<10	<10	<10	<10	<10	<50	
4-Methyl-2-pentanone		<10	<10	<10	<10	4.0 JB	<10	4.0 J	19 J	
Acetone	50	12	<10	7.0 J	<10	250	270 B	160	760	
Benzene	1	<10	<10	<10	<5.0	3.0 J	2.0 J	3.0 J	8.0 J	
Bromodichloromethane	50	<10	<10	<10	<5.0	<10	<10	<10	<25	
Bromoform	50	<10	<10	<10	<5.0	<10	<10	<10	<25	
Bromomethane	5	<10	<10	<10	<5.0	<10	<10	<10	<25	
Carbon Disulfide		<10	<10	<10	<5.0	<10	<10	2.0 J	<25	
Chlorobenzene	5	<10	<10	<10	<5.0	<10	<10	<10	<25	
Chloroform	7	<10	<10	<10	<5.0	<10	<10	<10	<25	
Chloromethane		<10	<10	<10	<5.0	<10	<10	<10	<25	
Dibromochloromethane	50	<10	<10	<10	<5.0	<10	<10	<10	<25	
Ethylbenzene Methylone Chloride	5	<10 <10	<10	<10	<5.0	<10	<10	0.50 J	<25	
Methylene Chloride	5 5	<10 <10	<10 <10	0.50 J <10	<5.0 <5.0	0.90 J <10	<10 <10	0.80 J <10	<25 <25	
Styrene Tetrachloroethene	5	<10 <10	<10 <10	<10 <10	<5.0 <5.0	<10 <10	<10 <10	<10	<25 <25	
Toluene	5	0.30 J	0.50 J	<10	<5.0	4.0 J	2.0 J	1.0 J	3.0 J	
Trichloroethene	5	<10	<10	<10	<5.0 <5.0	4.0 J <10	<10	<10	<25	
Vinyl Chloride	2	<10	<10	<10	<5.0	<10	<10	<10	<25	
Xylenes (total)	5	<10	<10	<10	<5.0	<10	<10	1.0 J	6.0 J	
Total BTEX		0.30 J	0.50 J	<10	<5.0	7.0 J	4.0 J	5.5 J	17 J	
Total VOCs		12 J	0.50 J	11 J	<10	290 J	320 J	210 J	940 J	
Detected Semivolatile Organ	nics									
2,4-Dimethylphenol	50	<10	<10	<11	<10	4.0 J	5.0 J	3.0 J	3.0 J	
2,4-Dinitrophenol	10	<25	<25	<27	<50	<25	<25	<100	<200	
2-Chloronaphthalene	10	<10	<10	<11	<10	<10	<10	<42	<40	
2-Methylnaphthalene		<10	<10	<11	<10	<10	0.70 J	<42	<40	
2-Methylphenol		<10	<10	<11	<10	5.0 J	8.0 J	7.0 J	3.0 J	
2-Nitrophenol		<10	<10	<11	<10	<10	<10	<42	<40	
3,3'-Dichlorobenzidine	5	<10	<10	<11	<20	<10	<10	<42	<80	
4-Methylphenol		<10	<10	<11	<10	180	260	250	210	
4-Nitroaniline	5	<25	<25	<27	<20	<25	<25	<100	<80	
Acenaphthene	20	1.0 J	0.50 J	0.30 J	<10	<10	0.70 J	4.0 J	1.0 J	
Acenaphthylene		0.50 J	0.20 J	0.20 J	<10	<10	<10	<42	<40	
Anthracene	50	<10	0.10 J	<11	<10	<10	0.20 J	0.50 J	<2.0	
Benzo(a)anthracene	0.002	<10	<10	<11	<10	<10	<10	<42	<40	
Benzo(a)pyrene	0	<10	<10	<11	<10	<10	<10	<42	<40	
Benzo(b)fluoranthene	0.002	<10	<10	<11	<10	<10	<10	<42	<40	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<10 <10	<10 <10	<11 <11	<10 <10	<10 <10	<10 <10	<42 <42	<40 <40	
	5	0.80 J	0.80 JB	<11	<10	<10	<10	<42	<40 <40	
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	50	<10	<10	<11	<10	<10	<10	<42 <42	<40 <40	
Detected Semivolatile Organ		~10	1 10		110	<u> </u>	_ \10	\7Z	\ -	
Carbazole	1	<10	<10	0.20 J	<10	<10	<10	1.0 J	<40	
Chrysene	0.002	<10	<10	<11	<10	<10	<10	<42	<40 <40	
Dibenzo(a,h)anthracene	0.002	<10	<10	<11	<10	<10	<10	<42	<40	
Dibenzofuran		0.50 J	0.20 J	0.20 J	<10	<10	<10	1.0 J	<40	
Diethylphthalate	50	<10	0.30 J	<11	<10	<10	<10	<42	<40	
Dimethylphthalate	50	<10	<10	<11	<10	<10	<10	<42	<40	
Di-n-Butylphthalate	50	<10	0.30 JB	0.080 J	<10	<10	<10	<42	<40	
Di-n-Octylphthalate	50	<10	<10	<11	<10	<10	<10	<42	<40	
Fluoranthene	50	<10	0.20 J	<11	<10	<10	<10	<42	<40	
Fluorene	50	0.50 J	<10	0.20 J	<10	<10	<10	1.0 J	<2.0	
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<11	<10	<10	<10	<42	<40	
Isophorone	50	<10	<10	<11	<10	<10	<10	<42	<40	
Naphthalene	10	0.30 J	0.20 J	0.40 J	<10	1.0 J	3.0 J	4.0 J	<40	
Phenanthrene	50	<10	0.20 J	<11	<10	<10	0.70 J	2.0 J	<40	
Phenol	1	<10	<10	<11	<10	40	48	20 J	21 J	
Pyrene	50	<10	0.20 J	<11	<10	<10	<10	<42	<40	
Total PAHs		2.3 J	1.6 J	1.1 J	<10	1.0 J	5.3 J	12 J	1.0 J	
Total SVOCs		3.6 J	3.2 J	1.6 J	<50	230 J	330 J	290 J	240 J	

	NYSDEC TOGS 1.1.1		OTRAC	JUSE, NEW 10						
Location ID:	Water Guidance		MW				MW			
Date Collected:	Values	03/31/98	05/20/98	10/24/00	04/21/03	03/31/98	05/20/98	10/25/00	04/21/03	
Detected Pesticides 4.4'-DDD	0.3	NA	NA	<0.10	<0.15	NA	NA	<0.10	<0.15	
4,4-DDD 4.4'-DDE	0.3	NA NA	NA NA	<0.10	<0.15	NA NA	NA NA	<0.10	<0.15	
4,4'-DDT	0.2	NA NA	NA NA	<0.10	<0.10	NA NA	NA NA	<0.10	<0.10	
Aldrin	0	NA NA	NA	<0.050	<0.050	NA	NA NA	<0.050	<0.050	
Alpha-BHC	0.01	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	< 0.050	
Alpha-Chlordane	0.05	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	< 0.050	
Beta-BHC		NA	NA	<0.050	< 0.050	NA	NA	< 0.050	< 0.050	
Delta-BHC		NA	NA	< 0.050	< 0.050	NA	NA	0.0052 J	<0.050	
Dieldrin	0.004	NA	NA	<0.10	<0.10	NA	NA NA	0.0046 J	<0.10	
Endosulfan I Endosulfan II		NA NA	NA NA	<0.050 <0.10	<0.050 <0.10	NA NA	NA NA	<0.050 <0.10	<0.050 <0.10	
Endosulfan Sulfate		NA NA	NA NA	<0.10	<0.10	NA NA	NA NA	<0.10	<0.10	
Endrin	0	NA NA	NA NA	<0.10	<0.10	NA NA	NA NA	0.0061 J	<0.10	
Endrin Aldehyde	5	NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.10	
Gamma-BHC (Lindane)	0.05	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	<0.050	
Gamma-Chlordane	0.05	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	< 0.050	
Heptachlor	0.04	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	0.0085 J	
Heptachlor Epoxide	0.03	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	< 0.050	
Methoxychlor	35	NA	NA	<0.50	<0.50	NA	NA	<0.50	<0.50	
Detected Inorganics										
Aluminum		50,000	24,300	52.9	<2,500	7,400	9,930	646	<12,500	
Antimony	3	<4.00	<4.00	<5.00	<100	<8.00	<4.00	<50.0	<500	
Arsenic	25	38.3	19.6	<2.50	<200	10.1 B	13.2	<25.0	<1,000	
Barium	1,000	316 EN	184 B	45.6	105 EJ	535 EN	874	593	1,110 EJ	
Beryllium Cadmium	5	4.40 BN 2.10 BN	1.60 B <1.00	<5.00 <5.00	<25.0 <50.0	4.00 BN <2.00	2.40 B 1.00 B	<5.00 <5.00	<125 <250	
Calcium		1,270,000 E	668,000	<5.00 83,400	195,000 EJ	352,000 E	340,000	<5.00 208.000	<250 336.000 EJ	
Chromium	50	80.0 N	29.3	<1.00	<50.0	10.5 BN	15.0	<10.0	<250	
Detected Inorganics	30	00.014	29.5	<1.00	₹30.0	10.5 DIV	13.0	<10.0	\250	
Cobalt		31.0 BN	12.9 B	<1.00	<50.0	4.20 BN	5.50 B	<10.0	<250	
Copper	200	281	122	2.10	<50.0	12.8 B	40.0	15.2	<250	
Cvanide	200	352	163	88.9	266	18.5	11.0	<10.0	4.40 B	
Cyanide, Available		NA	NA	<2	12	NA	NA	26	<2	
Iron	300	66,500 EN	26,900	178	<1,000	7,910 EN	13,200	1,100	<5,000	
Lead	25	133	48.4	<2.00	<50.0	15.4	26.2	<20.0	<250	
Magnesium		91,600 E	43,400	7,400	35,000 EJ	67,800 E	66,400	40,100	78,900 EJ	
Manganese	300	4,530 EN	2,060	175	59.6 B	263 EN	447	64.4	87.8 B	
Mercury	0.7	3.30	2.40 N	<0.100	<0.200 J	0.380	0.200 N	<0.100	<0.200 J	
Nickel	100	73.7 N	32.6 B	2.00	<50.0	12.2 BN	16.8 B	<15.0	<250	
Potassium	 10	22,900	23,600	18,900	10,200	69,200	71,900	44,000	60,100	
Selenium Silver	50	6.60 N <1.00	4.40 B <1.00	<5.00 <1.00	<150 <30.0	<4.00 <2.00	<2.00 <1.00	<50.0 <10.0	<750 <150	
Sodium		68,900	91,400	82,600	69,700	187,000	<43.0	2,440,000	4,270,000	
Thallium		<3.00	<3.00	<6.00	<200	<6.00	<3.00	<60.0	<1,000	
Vanadium		106 N	48.8 B	1.60	<30.0	12.5 BN	16.7 B	<10.0	<150	
Zinc	2,000	600	225	<5.00	<250	92.7	103	<50.0	<1,250	
Detected Inorganics-Filtered	d			•	•	•	•	•		
Iron	300	NA	NA	83.5	<2,000	NA	NA	<100	<2,000	
Manganese	300	NA	NA	181	47.9 B	NA	NA	51.7	92.4 B	
Detected Miscellaneous										
Alkalinity, CaCO3		2,620,000	86,900	NA	NA	806,000	643,000	NA	NA	
Available Cyanide		NA	NA	NA	NA	NA	NA	NA	NA	
BOD		3,000	8,700	<2,000	2,300	114,000	117,000	NA	120,000	
Carbon Dioxide by Headspace		NA	NA	7,370	17,000	NA	NA	66,170	66,000	
Carbon monoxide Carbonate, CaCO3		NA 70.000	NA 2.000	<400	<400	NA 44.000	NA C 440	<400	<400 NA	
COD		72,300 19,000	<2,000 <10,000	NA <10,000	NA 16,900	14,200 82,000	6,410 144,000	NA NA	409,000	
Chloride	250.000	57,600	216,000	171,000	120,000	12,800,000	<10,000,000	NA NA	12,000,000	
DOC Average Quads	250,000	NA	NA	4,720	3,400	NA	NA	92,800	68,000	
Hardness, Ca/CO3		3,560,000	1,850,000	NA	NA	1,160,000	1,120,000	NA	NA	
Iron, Ferric		NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA	
Methane		NA	NA	140	1,900	NA	NA	17,860	22,000,000	
Nitrate + Nitrite (as N)		NA	NA	NA	NA	NA	NA	NA	NA	
Nitrate Nitrogen	10,000	260	267	106	4,300	<100	<100	<100	<100	
Nitrite Nitrogen	1,000	86	107	<100	<100	<5	20	<100	26,000	
Oil and Grease		<1,000	4,800	NA	NA	<1,000	2,000	NA	NA	
Orthophosphate		NA	NA	NA 1.050	NA 1 000	NA	NA NA	NA 222	NA 040	
Oxygen		NA 0.64	NA 0.4	1,050	1,200	NA 0.27	NA 0.2	680	340	
pH Sulfato	250,000	8.64	9.1	NA 130,000	NA 400,000	8.37	8.3	NA 27 700	NA 2.200	
Sulfate Sulfide	250,000 50	246,000 <2,000	256,000 <1,000	130,000 <1,000	<1,000	49,100 49,900	<10,000 45,400	27,700 46,400	2,300 66,000	
TOC Average Quads	50	<2,000 NA	<1,000 NA	6,600	3,800	49,900 NA	45,400 NA	102,000	81,000	
Total Dissolved Solids	1,000,000	660,000	721,000	NA	NA	23,100,000	25,100,000	NA	NA	
Total Dissolved Stillus	1,000,000	000,000	121,000	11/1	INV	23,100,000	23,100,000	INA	14/4	

	NYSDEC TOGS 1.1.1			USE, NEW 10					
Location ID:	Water Guidance	00/00/00	MW-2		0.4/4.0/00	00/04/00	MW-		0.4/4.0/00
Date Collected:	Values	03/30/98	05/20/98	10/24/00	04/10/03	03/31/98	05/20/98	10/24/00	04/10/03
Detected Volatile Organics	_	10	10	10	5.0		40		5.0
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0	<10	<10	<20	<5.0
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	<10 <10	<10 <10	<10 <10	<5.0 <5.0	<10 <10	<10 <10	<20 <20	<5.0 <5.0
1,1-Dichloroethane	5	<10	<10	<10	<5.0 <5.0	<10	<10	<20	<5.0 <5.0
2-Butanone		7.0 JB	<10	5.0 J	<10	19	150	64	13
2-Hexanone	50	<10	<10	<10	<10 J	<10	<10	3.0 J	<10
4-Methyl-2-pentanone		1.0 J	<10	0.60 J	<10 J	2.0 JB	<10	5.0 J	<10
Acetone	50	26 B	26	12	<10	160	940	200	77 J
Benzene	1	<10	<10	0.20 J	<5.0	2.0 J	<10	2.0 J	3.0 J
Bromodichloromethane	50	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Bromoform	50	<10	<10	<10	<5.0 J	<10	<10	<20	<5.0
Bromomethane	5	1.0 JB	<10	<10	<5.0	<10	<10	<20	<5.0 J
Carbon Disulfide		<10	<10	0.50 J	<5.0	<10	<10	2.0 J	16
Chlorobenzene	5	<10	0.60 J	<10	<5.0	<10	<10	<20	<5.0
Chloroform	7	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Chloromethane		<10	<10	<10	<5.0 J	<10	<10	<20	3.0 J
Dibromochloromethane	50	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Ethylbenzene	5	2.0 J	3.0 J	3.0 J	<5.0	0.60 J	<10	0.60 J	0.60 J
Methylene Chloride	5	<10	<10	0.50 J	<0.40	<10	<10	2.0 J	0.50 J
Styrene	5	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Tetrachloroethene	5	<10	2.0 J	<10	<5.0	<10	<10	<20	<5.0
Toluene	5	<10	12	0.60 J	<5.0	3.0 J	<10	2.0 J	3.0 J
Trichloroethene	5	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Vinyl Chloride	2	<10	<10	<10	<5.0	<10	<10	<20	<5.0
Xylenes (total)	5	8.0 J	11	12	<5.0	2.0 J	<10	2.0 J	3.0 J
Total BTEX		10 J	26 J	16 J	<5.0	7.6 J	<10	6.6 J	9.6 J
Total VOCs		45 J	55 J	34 J	<10	190 J	1,100	280 J	120 J
Detected Semivolatile Organ									
2,4-Dimethylphenol	50	<10	<10	<22	<10	<10	<10	<100	<10
2,4-Dinitrophenol	10	<25	<25	<55	<50	<25	<25	<250	<50
2-Chloronaphthalene	10	<10 8.0 J	<10 69	<22 96	<10	<10 <10	<10 <10	<100	<10 <10
2-Methylnaphthalene		<10	<10	<22	<10 <10	<10	<10	<100 <100	<10
2-Methylphenol 2-Nitrophenol		<10	<10	<22	<10	<10	<10	<100	<10
3,3'-Dichlorobenzidine	5	<10	<10	<22	<20	<10	<10	<100	<20
4-Methylphenol		<10	0.50 J	<22	<10	220	640	540	<10
4-Nitroaniline	5	<25	<25	<55	<20	<25	<25	<250	<20
Acenaphthene	20	<10	2.0 J	3.0	<10	<10	<10	<100	<10
Acenaphthylene		<10	<10	2.0 J	<10	<10	<10	<100	<10
Anthracene	50	0.20 J	0.20 J	0.40 J	<10	<10	<10	<100	<10
Benzo(a)anthracene	0.002	<10	<10	<22	<10	<10	<10	<100	<10
Benzo(a)pyrene	0	<10	<10	<22	<10	<10	<10	<100	<10
Benzo(b)fluoranthene	0.002	<10	<10	<22	<10	<10	<10	<100	<10
Benzo(g,h,i)perylene		<10	<10	<22	<10	<10	<10	<100	<10
Benzo(k)fluoranthene	0.002	<10	<10	<22	<10	<10	<10	<100	<10
bis(2-Ethylhexyl)phthalate	5	4.0 J	2.0 JB	<22	<10	<10	<10	<100	<10
Butylbenzylphthalate	50	<10	<10	<22	<10	<10	<10	<100	<10
Detected Semivolatile Organ	nics								
Carbazole		<10	0.90 J	1.0 J	<10	<10	<10	<100	<10
Chrysene	0.002	<10	<10	<22	<10	<10	<10	<100	<10
Dibenzo(a,h)anthracene		<10	<10	<22	<10	<10	<10	<100	<10
Dibenzofuran		0.40 J	3.0 J	4.0 J	<10	<10	<10	<100	<10
Diethylphthalate	50	<10	0.40 J	<22	<10	<10	<10	<100	<10
Dimethylphthalate	50	<10	1.0 J	<22	<10	<10	<10	<100	<10
Di-n-Butylphthalate	50	0.20 J	0.60 JB	<22	<10	<10	<10	<100	<10
Di-n-Octylphthalate	50	<10	<10	<22	<10	<10	<10	<100	<10
Fluoranthene	50	<10	0.20 J	<22	<10	<10	<10	<100	<10
Fluorene	50	<10	2.0 J	2.0 J	<10	<10	<10	<100	<10
Indeno(1,2,3-cd)pyrene	0.002	<10 <10	<10 <10	<22 <22	<10	<10 <10	<10 <10	<100 <100	<10 <10
Isophorone	50 10			<22 47	<10				
Naphthalene Phononthropo	10 50	5.0 J 0.40 J	41 2.0 J	5.0 J	<10 <10	2.0 J	2.0 J	2.0 J <100	<10 <10
Phenanthrene Phenol	1	0.40 J	2.0 J	4.0 J	<10	<10 180	<10 170	150	<10
Pyrene	50	<10	0.20 J	4.0 J <22	<10	<10	<10	<100	<10
Total PAHs	50	14 J	120 J	160 J	<10	2.0 J	2.0 J	2.0 J	<10
Total SVOCs		19 J	130 J	160 J	<50	400 J	810 J	690 J	<50
. 3 0 7 0 0 0	1 -	100	1000	1000	~50		0100	0000	~00

			SYRAC	USE, NEW YO	rk.				
	NYSDEC TOGS 1.1.1								
Location ID: Date Collected:		03/30/98	MW-2 05/20/98	2S 10/24/00	04/10/03	03/31/98	MW- 05/20/98	2D 10/24/00	04/10/03
Detected Pesticides	values	03/30/96	03/20/98	10/24/00	04/10/03	03/31/36	03/20/36	10/24/00	04/10/03
4,4'-DDD	0.3	NA	NA	<0.10	<0.15	NA	NA	<0.10	<0.17
4,4'-DDE	0.2	NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.11
4,4'-DDT	0.2	NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.11
Aldrin	0	NA	NA	< 0.050	<0.050	NA	NA	< 0.050	<0.056
Alpha-BHC	0.01	NA	NA	<0.050	<0.050	NA	NA	< 0.050	<0.056
Alpha-Chlordane	0.05	NA NA	NA NA	<0.050	<0.050	NA NA	NA NA	<0.050	<0.056
Beta-BHC Delta-BHC		NA NA	NA NA	<0.050 0.0038 J	<0.050 <0.050	NA NA	NA NA	<0.050 0.011 J	<0.056 <0.056
Dieldrin	0.004	NA NA	NA NA	<0.10	<0.00	NA NA	NA NA	<0.10	<0.056
Endosulfan I		NA NA	NA NA	<0.050	<0.050	NA NA	NA NA	<0.050	<0.056
Endosulfan II		NA	NA NA	<0.10	<0.10	NA	NA	<0.10	<0.11
Endosulfan Sulfate		NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.11
Endrin	0	NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.11
Endrin Aldehyde	5	NA	NA	<0.10	<0.10	NA	NA	<0.10	<0.11
Gamma-BHC (Lindane)	0.05	NA	NA	< 0.050	< 0.050	NA	NA	< 0.050	< 0.056
Gamma-Chlordane	0.05	NA	NA	<0.050	<0.050	NA	NA	< 0.050	<0.056
Heptachlor	0.04	NA NA	NA NA	<0.050	<0.050	NA NA	NA NA	<0.050	0.022 J
Heptachlor Epoxide	0.03	NA NA	NA NA	<0.050	<0.050	NA NA	NA NA	<0.050	<0.056
Methoxychlor Detected Inorganics	35	INA	NA	<0.50	<0.50	INA	INA	<0.50	<0.56
Aluminum		533	4,240	<20.0	<2,500	50,000	23,300	216	<12,500
Antimony	3	<4.00	4,240 <4.00	<10.0	<2,500	<8.00	<4.00	<50.0	<12,500 <500
Arsenic	25	<2.00	4.20 B	<5.00	<200	42.8	42.8	<50.0 <25.0	<1,000
Barium	1,000	33.2 BEN	91.6 B	86.8	<11.3	780 EN	784	1,050	288
Beryllium		<1.00	<1.00	<5.00	<25.0	6.00 BN	4.60 B	<5.00	<125
Cadmium	5	1.10 BN	<1.00	<5.00	<50.0	8.70 BN	6.30	<5.00	<250
Calcium		358,000 E	620,000	730,000	140,000	1,470,000 E	747,000	316,000	199,000
Chromium	50	1.20 BN	8.60 B	<2.00	<50.0	72.0 N	30.6	<10.0	<250
Detected Inorganics									
Cobalt		<1.00	1.70 B	<2.00	<50.0	28.2 BN	12.1 B	<10.0	<250
Copper	200	2.40 B	25.8	<2.00	<50.0	178	85.2	13.4	<250
Cyanide	200	110	147	30.5	79.5	25.3	<10.0	<10.0	6.00 B
Cyanide, Available		NA .	NA	5	3	NA	NA	68	14
Iron	300	739 EN	4,880	107	<1,000	68,300 EN	26,200	236	<5,000
Lead Magnesium	25	2.30 B 9,450 E	14.1 6,990	<4.00 71.5	<50.0 <500	112 N 92,100 E	43.6 116.000	<20.0 71,700	<250
Manganese	300	9,450 E 74.2 EN	350	<2.00	<500 18.2 B	92,100 E 2,510 EN	1,270	62.0	<2,500 <375
Mercury	0.7	0.260	0.410 N	<0.100	<0.200	0.840	0.720 N	<0.100	<0.200
Nickel	100	5.30 BN	8.60 B	<3.00	<50.0	84.2 N	38.8 B	<15.0	<250
Potassium		6,620	13,200	16,900	<2,000	97,500	100,000	92,500	64,200
Selenium	10	<2.00	<2.00	<10.0	<150	7.20 BN	2.50 B	<50.0	<750
Silver	50	<1.00	<1.00	<2.00	<30.0	<2.00	<1.00	<10.0	<150
Sodium		43,600 E	63,700	103,000	<2,000	151,000 E	<43.0	3,170,000	2,190,000
Thallium		<3.00	<3.00	<12.0	<200	<6.00 N	<3.00	<60.0	<1,000
Vanadium		2.60 BN	9.80 B	<2.00	<30.0	79.7 BN	35.9 B	<10.0	<150
Zinc	2,000	3.90 B	39.7	<10.0	<250	380	217	<50.0	<1,250
Detected Inorganics-Filtered									
Iron	300	NA	NA	100	<1,000	NA	NA	<100	<1,000
Manganese	300	NA	NA	<1.00	17.8 B	NA	NA	56.8	58.3 B
Detected Miscellaneous	1	1 200 000	1 660 000	I NIA	NIA.	1.010.000	200.000	NIA.	N.A
Alkalinity, CaCO3 Available Cyanide		1,390,000 NA	1,660,000 NA	NA NA	NA NA	1,010,000 NA	309,000 NA	NA NA	NA NA
BOD		2,100	4,500	<2,000	510 JB	111,000	117,000	69,000	69,000 J
Carbon Dioxide by Headspace		NA	4,500 NA	<600	2,100	NA	NA	102,100	<600
Carbon monoxide		NA NA	NA NA	<400	<400	NA NA	NA NA	<400	<400
Carbonate, CaCO3		<2,000	221,000	NA	NA	381,000	3,870	NA	NA
COD		23,300	22,400	29,300	13,200	60,500	144,000	613,000	190,000
Chloride	250,000	23,900	182,000	177,000	160,000	16,500,000	<10,000,000	14,500,000	4,900,000
DOC Average Quads		NA	NA	8,840	4,800	NA	NA	112,000	48,000
Hardness, Ca/CO3		<1,000	1,580,000	NA	NA	4,050,000	6,640,000	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous		NA NA	NA	NA 1.010	NA 4.0	NA	NA	NA 10.000	NA 11.000
Methane		NA NA	NA NA	1,810	4.3	NA NA	NA NA	13,060	14,000
Nitrate + Nitrite (as N)	10.000	NA <100	NA 274	NA -100	NA 9 200	NA 100	NA -100	NA <100	NA <5.000
Nitrate Nitrogen Nitrite Nitrogen	10,000 1,000	<100 22	274 183	<100 <100	8,300 <100	100 <5	<100 12	<100 <100	<5,000 <5,000
Oil and Grease	1,000	<1,000	2,600	<100 NA	<100 NA	<1,000	<1,000	<100 NA	<5,000 NA
Orthophosphate		<1,000 NA	2,600 NA	NA NA	NA NA	<1,000 NA	×1,000	NA NA	NA NA
Oxygen		NA NA	NA NA	710	4,800	NA NA	NA NA	700	500
рН		10.3	12.54	NA NA	NA	9.71	8.32	NA	NA NA
Sulfate	250,000	77,100	120,000	150,000	120,000	275,000	<10,000	<1,000	2,300
Sulfide	50	<1,000	<1,000	<1,000	57,000	51,700	47,800	24,200	58,000
TOC Average Quads		NA	ŇA	9,010	6,000	NA	NA	118,000	51,000
Total Dissolved Solids	1,000,000	170,000	1,700,000	NA	NA	34,000,000	42,800,000	NA	NA

	NYSDEC TOGS 1.1.1		, NEW TORK				
Location ID:	Water Guidance			MW-			
Date Collected:	Values	03/30/98	05/20/98	10/24/00	04/09/03	02/07/06	02/25/13
Detected Volatile Organics	_						
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0	NA NA	NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	<10 <10	<10 <10	<10 <10	<5.0 <5.0	NA NA	NA NA
1,1-Dichloroethane	5	<10	<10	<10	<5.0	NA NA	NA
2-Butanone		<10	<10	<10	<10	NA NA	NA
2-Hexanone	50	<10	<10	<10	<10	NA	NA
4-Methyl-2-pentanone		<10	<10	<10	<10	NA	NA
Acetone	50	<10	14 B	1.0 J	<10	NA	NA
Benzene	1	<10	<10	0.50 J	<5.0	<0.40 H	< 0.50
Bromodichloromethane	50	<10	<10	<10	<5.0	NA	NA
Bromoform	50	<10	<10	<10	<5.0	NA NA	NA NA
Bromomethane Carbon Disulfide	5	<10 <10	<10 <10	<10 2.0 J	<5.0 J <5.0	NA NA	NA NA
Chlorobenzene	5	<10	<10	<10	<5.0	NA NA	NA
Chloroform	7	<10	<10	<10	<5.0	NA NA	NA
Chloromethane		<10	<10	<10	<5.0 J	NA	NA
Dibromochloromethane	50	<10	<10	<10	<5.0	NA	NA
Ethylbenzene	5	14	0.70 J	2.0 J	<5.0 J	1.4 J	<1.0
Methylene Chloride	5	<10	<10	0.60 J	<0.40	NA	NA
Styrene	5	<10	<10	<10	<5.0	NA	NA
Tetrachloroethene	5	<10	<10	<10	<5.0	NA 4.5.1	NA 4.0
Toluene Trichloroethene	5 5	<10 <10	3.0 J <10	0.80 J <10	2.0 J <5.0	1.5 J NA	<1.0 NA
Vinyl Chloride	2	<10	<10	<10	<5.0 <5.0	NA NA	NA NA
Xylenes (total)	5	18	6.0 J	7.0 J	37	16	<1.0
Total BTEX		32	9.7 J	10 J	39 J	19 J	<1.0
Total VOCs		32	24 J	14 J	39 J	19 J	<1.0
Detected Semivolatile Organ	nics		•	•	•	•	
2,4-Dimethylphenol	50	<10	<10	<10	<20	NA	NA
2,4-Dinitrophenol	10	<25	<25	<26	<100	NA	NA
2-Chloronaphthalene	10	<10	<10	<10	<20	NA	NA
2-Methylnaphthalene		2.0 J	2.0 J	0.80 J	5.0 J	1.0 J	NA
2-Methylphenol 2-Nitrophenol		<10 <10	<10 <10	<10 <10	<20 <20	NA NA	NA NA
3,3'-Dichlorobenzidine	5	<10	<10	<10	<40	NA NA	NA NA
4-Methylphenol		<10	<10	<10	<20	NA NA	NA
4-Nitroaniline	5	<25	<25	<26	<40	NA	NA
Acenaphthene	20	<10	<10	<10	<20	< 0.90	NA
Acenaphthylene		<10	<10	<10	<20	< 0.90	NA
Anthracene	50	<10	0.080 J	<10	<20	<1.0	NA
Benzo(a)anthracene	0.002	<10	0.20 J	<10	<20	<1.0	NA
Benzo(a)pyrene	0.002	<10 <10	<10 <10	<10 <10	<20 <20	<1.0 <2.0	NA NA
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.002	<10	<10	<10	<20	<1.0	NA NA
Benzo(k)fluoranthene	0.002	<10	<10	<10	<20	<1.0	NA NA
bis(2-Ethylhexyl)phthalate	5	<10	1.0 JB	<10	<20	NA NA	NA
Butylbenzylphthalate	50	<10	<10	<10	<20	NA	NA
Detected Semivolatile Organ	nics						
Carbazole		<10	<10	<10	<20	NA	NA
Chrysene	0.002	<10	0.10 J	<10	<20	<1.0	NA
Dibenzo(a,h)anthracene		<10	<10	<10	<20	<2.0	NA
Dibenzofuran Diothylahthalata	 50	<10 <10	<10 0.40 J	<10 <10	<20 <20	NA NA	NA NA
Diethylphthalate Dimethylphthalate	50	<10	<10	<10	<20	NA NA	NA NA
Di-n-Butylphthalate	50	<10	0.30 JB	0.20 J	<20	NA NA	NA
Di-n-Octylphthalate	50	<10	<10	<10	<20	NA NA	NA
Fluoranthene	50	<10	0.20 J	<10	<20	<1.0	NA
Fluorene	50	<10	<10	<10	<20	< 0.90	NA
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<20	<1.0	NA
Isophorone	50	<10	<10	<10	<20	NA	NA
Naphthalene	10	95	50	26	100	54	6.7
Phenanthrene Phenol	50 1	<10 <10	0.20 J 0.30 J	<10 <10	<20 <20	<0.80 NA	NA NA
Pyrene	50	<10 <10	0.30 J 0.20 J	<10 <10	<20 <20	<1.0	NA NA
Total PAHs		97 J	53 J	27 J	110 J	55 J	NA NA
Total SVOCs		97 J	55 J	27 J	110 J	55 J	NA

	NYSDEC TOGS 1.1.1						
Location ID:	Water Guidance			MW-	3S		
Date Collected:	Values	03/30/98	05/20/98	10/24/00	04/09/03	02/07/06	02/25/13
Detected Pesticides							
4,4'-DDD 4.4'-DDE	0.3 0.2	NA NA	NA NA	<0.10 <0.10	<0.15 <0.10	NA NA	NA NA
4,4'-DDT	0.2	NA NA	NA NA	<0.10	<0.10	NA NA	NA NA
Aldrin	0	NA NA	NA	<0.050	<0.050	NA.	NA
Alpha-BHC	0.01	NA	NA	< 0.050	< 0.050	NA	NA
Alpha-Chlordane	0.05	NA	NA	< 0.050	< 0.050	NA	NA
Beta-BHC		NA NA	NA	<0.050	<0.050	NA	NA
Delta-BHC Dieldrin	0.004	NA NA	NA NA	<0.050 <0.10	<0.050 <0.10	NA NA	NA NA
Endosulfan I		NA NA	NA NA	<0.050	<0.050	NA NA	NA NA
Endosulfan II		NA	NA	<0.10	<0.10	NA	NA
Endosulfan Sulfate		NA	NA	<0.10	<0.10	NA	NA
Endrin	0	NA	NA	<0.10	<0.10	NA	NA
Endrin Aldehyde Gamma-BHC (Lindane)	5 0.05	NA NA	NA NA	0.0076 J <0.050	<0.10 <0.050	NA NA	NA NA
Gamma-BHC (Lindane) Gamma-Chlordane	0.05	NA NA	NA NA	<0.050	<0.050	NA NA	NA NA
Heptachlor	0.04	NA	NA	<0.050	<0.050	NA.	NA NA
Heptachlor Epoxide	0.03	NA	NA	<0.050	<0.050	NA	NA
Methoxychlor	35	NA	NA	<0.50	<0.50	NA	NA
Detected Inorganics							
Aluminum		4,530	752	NA	<2,500	NA	NA
Antimony	3	6.30 B	<4.00	<5.00	<100	NA NA	NA NA
Arsenic Barium	25 1,000	25.1 174 BEN	2.80 B 104 B	9.30 19.8	<200 <15.8	NA NA	NA NA
Barrum	1,000	1.10 BN	<1.00	<5.00	<25.0	NA NA	NA NA
Cadmium	5	1.30 BN	<1.00	<5.00	<50.0	NA NA	NA NA
Calcium		635,000 E	762,000	126,000	106,000	NA	NA
Chromium	50	9.50 BN	1.80 B	2.80	<50.0	NA	NA
Detected Inorganics							
Cobalt		2.70 BN	<1.00	1.10	<50.0	NA	NA
Copper	200	52.9	3.30 B	7.10	<50.0	NA 440	NA 450
Cyanide Cyanide, Available	200	193 NA	294 NA	210 <2	172 3	110 <2	150 21
Iron	300	5,210 EN	1,080	717	<1,000	NA	317
Lead	25	22.4 N	1.30 B	2.20	<50.0	NA NA	NA
Magnesium		24,200	1,330 B	22,000	42,100	NA	NA
Manganese	300	498 EN	53.7	102	<75.0	NA	229
Mercury	0.7	0.260	2.30 N	<0.100	<0.200	NA	NA
Nickel	100	14.3 BN	4.50 B	2.60	<50.0	NA	NA
Potassium Selenium	 10	33,800 4.40 BN	45,200 2.70 B	43,400 <5.00	27,500 J <150	NA NA	NA NA
Silver	50	<1.00	<1.00	<1.00	<30.0	NA NA	NA NA
Sodium		53,800 E	95,400	103,000	96,300	NA NA	NA
Thallium		<3.00	<3.00	<6.00	<200	NA	NA
Vanadium		11.0 BN	2.20 B	3.40	<30.0	NA	NA
Zinc	2,000	73.7	17.9 B	28.4	<250	NA	NA
Detected Inorganics-Filtered							
Iron Manganese	300 300	NA NA	NA NA	47.2 24.4	<1,000 5.80 B	NA NA	NA NA
Detected Miscellaneous	300	INA	INA	24.4	3.00 B	INA	INA
Alkalinity, CaCO3		4,200,000	385,000	NA	NA	NA	NA
Available Cyanide		NA NA	NA	NA NA	NA NA	NA NA	52 B
BOD		3,000	<2,000	<2,000	2,600 J	NA	NA
Carbon Dioxide by Headspace		NA	NA	1,570	3,100	NA	2,040
Carbon monoxide		NA	NA	<400	<400	NA	NA
Carbonate, CaCO3		3,150,000	61,200	NA 40.000	NA 10,100	NA NA	NA NA
COD Chloride	250,000	32,000 88,400	14,100 156,000	<10,000 220,000	10,400 210,000	NA NA	NA NA
DOC Average Quads		00,400 NA	NA	1,870	3,700	NA NA	NA NA
Hardness, Ca/CO3		1,680,000	1,910,000	NA	NA	NA NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA
Methane		NA	NA	<70	55	NA	292
Nitrate + Nitrite (as N)	10,000	NA 2.100	NA	NA 100	NA 6 100	<8 NA	130
Nitrate Nitrogen Nitrite Nitrogen	10,000 1,000	2,190 204	608 321	<100 <100	6,100 <100	NA NA	130 2.7 B
Oil and Grease	1,000	<1,000	<1,000	NA	NA	NA NA	NA
Orthophosphate		NA	NA	NA	NA NA	NA NA	39 B
Oxygen		NA	NA	1,730	3,400	NA	NA
pH		12.3	11.93	NA	NA	NA	NA
Sulfate	250,000	217,000	292,000	246,000	150,000	143,000	83,600
Sulfide	50	<1,000	<1,000	<1,000	<1,000	NA	<2,000
TOC Average Quads	1 000 000	NA nen non	NA 1.050.000	2,790	4,700	NA NA	4,900
Total Dissolved Solids	1,000,000	960,000	1,050,000	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1			\$4047					
Location ID:	Water Guidance	03/30/98	05/20/98	MW-3D 10/24/00	04/09/03	02/06/06	03/24/08	12/06/10	02/25/13
Date Collected: Detected Volatile Organics	Values	03/30/98	05/20/98	10/24/00	04/09/03	02/06/06	03/24/08	12/06/10	02/25/13
1,1,1-Trichloroethane	5	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<10 [<10]	<10 [<10]	<20	<5.0	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	<10 [<10]	<10 [<10]	<20	<5.0	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	5	<10 [<10]	<10 [<10]	<20	<5.0	NA.	NA.	NA.	NA.
2-Butanone		<10 [<10]	<10 [<10]	<20	<10	NA NA	NA NA	NA NA	NA.
2-Hexanone	50	<10 [<10]	<10 [<10]	<20	<10	NA	NA	NA	NA
4-Methyl-2-pentanone		<10 [<10]	<10 [<10]	<20	<10	NA	NA	NA	NA
Acetone	50	<10 [<10]	<10 [<10]	7.0 J	27 J	NA	NA	NA	NA
Benzene	1	20 J [16 J]	13 J [15 J]	13 J	22	19	16	18	18
Bromodichloromethane	50	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Bromoform	50	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Bromomethane	5	<10 [<10]	<10 [<10]	<20	<5.0 J	NA	NA	NA	NA
Carbon Disulfide		<10 [<10]	<10 [<10]	0.80 J	<5.0	NA	NA	NA	NA
Chlorobenzene	5	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Chloroform	7	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Chloromethane		<10 [<10]	<10 [<10]	<20	2.0 J	NA	NA	NA	NA
Dibromochloromethane	50	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Ethylbenzene	5	110 [100]	94 [100]	88	51	52	52	62	86
Methylene Chloride	5	<10 [<10]	<10 [<10]	2.0 J	<5.0	NA NA	NA	NA	NA NA
Styrene	5	<10 [40 J]	<10 [<10]	<20	<5.0	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene Toluene	5	<10 [<10] 84 [64]	<10 [<10] 64 [71]	<20 49	<5.0 46	NA 42	NA 48	NA 43	NA 45
Trichloroethene	5	<10 [<10]	<10 [<10]	<20	<5.0	NA	NA	NA	NA
Vinyl Chloride	2	<10 [<10]	<10 [<10]	<20	<5.0	NA NA	NA NA	NA NA	NA NA
Xylenes (total)	5	1,100 [960]	1,000 [1,200]	870	560	590	690 D	610	630
Total BTEX		1,300 J [1,100 J]	1,200 J [1,400 J]	1,000 J	680	700	810	730	780
Total VOCs		1,300 J [1,200 J]	1,200 J [1,400 J]	1,000 J	710 J	700	810	730	780
Detected Semivolatile Organ	nics	.,	,,	.,					
2,4-Dimethylphenol	50	<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
2,4-Dinitrophenol	10	<25 [<25]	<25 [<25]	<1,400	<2,500	NA NA	NA NA	NA NA	NA
2-Chloronaphthalene	10	<10 [<10]	<10 [<10]	<560	<500	NA	NA NA	NA	NA
2-Methylnaphthalene		41 J [45 J]	56 J [54 J]	54	81 J	74 J	38	33	NA
2-Methylphenol		<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
2-Nitrophenol		<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	<10 [<10]	<10 [<10]	<560	<1,000	NA	NA	NA	NA
4-Methylphenol		<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
4-Nitroaniline	5	<25 [<25]	<25 [<25]	<1,400	<1,000	NA	NA	NA	NA
Acenaphthene	20	<10 [<10]	<10 [<10]	<560	<500	<40	<10	<4.0	NA
Acenaphthylene		<10 [<10]	<10 [<10]	<560	<500	<38	<10	<4.0	NA
Anthracene	50	<10 [<10]	<10 [<10]	<560	<500	<50	<10	<4.0	NA
Benzo(a)anthracene	0.002	<10 [<10]	<10 [<10]	<560	<500	<60	<10	<4.0	NA
Benzo(a)pyrene	0	<10 [<10]	<10 [<10]	<560	<500	<54	<10	<4.0	NA
Benzo(b)fluoranthene	0.002	<10 [<10]	<10 [<10]	<560	<500	<77	<10	<4.0	NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<10 [<10] <10 [<10]	<10 [<10] <10 [<10]	<560 <560	<500 <500	<52 <46	<10 <10	<4.0 <4.0	NA NA
bis(2-Ethylhexyl)phthalate	5	<10 [<10]	<10 [<10]	<560	<500	NA	NA NA	NA	NA NA
Butylbenzylphthalate	50	<10 [<10]	<10 [<10]	<560	<500	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organ		710 [X10]	210 [210]	~500	~ 000	14/5	14/5	14/5	14/7
Carbazole		<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
Chrysene	0.002	<10 [<10]	<10 [<10]	<560 <560	<500	<48	<10	<4.0	NA NA
Dibenzo(a,h)anthracene	0.002	<10 [<10]	<10 [<10]	<560	<500	<67	<10	<4.0	NA NA
Dibenzofuran		<10 [<10]	<10 [<10]	<560	<500	NA NA	NA NA	NA	NA NA
Diethylphthalate	50	<10 [<10]	<10 [<10]	<560	<500	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<10 [<10]	<10 [8.0 J]	<560	<500	NA	NA NA	NA	NA
Di-n-Butylphthalate	50	<10 [<10]	<10 [<10]	<560	<500	NA	NA NA	NA	NA
Di-n-Octylphthalate	50	<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
Fluoranthene	50	<10 [<10]	<10 [<10]	<560	<500	<54	<10	<4.0	NA
Fluorene	50	<10 [<10]	<10 [<10]	<560	<500	<38	<10	<4.0	NA
Indeno(1,2,3-cd)pyrene	0.002	<10 [<10]	<10 [<10]	<560	<500	<58	<10	<4.0	NA
Isophorone	50	<10 [<10]	<10 [<10]	<560	<500	NA	NA	NA	NA
Naphthalene	10	2,300 [2,800]	2,300 [2,000]	2,200	2,300	2,600	1,400 D	1,000 D	2,800
Phenanthrene	50	<10 [<10]	<10 [<10]	<560	<500	<33	0.30 J	0.29 J	NA
Phenol	1	49 J [50 J]	40 J [17 J]	13 J	<500	NA	NA	NA	NA
Pyrene	50	<10 [<10]	<10 [<10]	<560	<500	<50	<10	<4.0	NA
Total PAHs		2,300 J [2,900 J]	2,400 J [2,100 J]	2,300	2,400 J	2,700 J	1,400 J	1,000 J	NA
Total SVOCs		2,400 J [2,900 J]	2,400 J [2,100 J]	2,300 J	2,400 J	2,700 J	1,400 J	1,000 J	NA

NYSDEC TOGS 1.1.1 Location ID: Date Collected: Values 03/30/98 05/20/98	02/25/13
Date Collected: Values 03/30/98 05/20/98 10/24/00 04/09/03 02/06/06 03/24/08 12/06/10 Detected Pesticides	02/25/13
Detected Pesticides	
4,4'-DDD 0.3 NA NA <0.10 <0.15 NA NA NA	NA
4,4'-DDE 0.2 NA NA <0.10 <0.10 NA NA NA	NA
4.4-DDT 0.2 NA NA <0.10 <0.10 NA NA NA	NA
Aldrin 0 NA NA <0.050 <0.050 NA NA NA Alpha-BHC 0.01 NA NA <0.050	NA NA
Alpha-Chlordane 0.05 NA NA < 0.050 < 0.050 NA NA NA NA	NA NA
NA	NA NA
Delta-BHC	NA
Dieldrin 0.004 NA NA <0.10 <0.10 NA NA NA	NA
Endosulfan I NA NA <0.050 <0.050 NA NA NA	NA
Endosulfan II NA NA <0.10 <0.10 NA NA NA	NA
Endosulfan Sulfate NA NA <0.10 <0.10 NA NA	NA
Endrin 0 NA NA <0.10 <0.10 NA NA Endrin Aldehyde 5 NA NA <0.10	NA NA
Emulii Alderiyde 3 NA NA (0.10 V.11 NA	NA NA
Cammar-Chlordane	NA NA
Heptachlor 0.04 NA NA <0.050 <0.050 NA NA NA	NA
Heptachlor Epoxide 0.03 NA NA <0.050 <0.050 NA NA NA	NA
Methoxychlor 35 NA NA <0.50 <0.50 NA NA NA	NA
Detected Inorganics	
Aluminum 3,740 [3,500] 675 [733] <20.0 <2,500 NA NA NA	NA
Antimony 3 <4.00 [<4.00] 5.50 B [<4.00] <10.0 <100 NA NA NA	NA
Arsenic 25 6.20 B [5.60 B] <2.00 [2.00 B] <5.00 <200 NA NA NA NA	NA
Barium 1,000 109 BEN [107 BEN] 96.0 B [97.6 B] 113 97.7 NA NA NA Beryllium <1.00 [<1.00]	NA NA
Beryllium <1.00 [<1.00] <1.00 [<1.00] <5.00 <25.0 NA NA NA Cadmium 5 <1.00 [<1.00]	NA NA
Calcium 666,000 E 669,000 E 594,000 [611,000] 783,000 821,000 NA NA NA NA	NA NA
Society Soci	NA NA
Detected Inorganics	
Cobalt 1.40 BN [1.60 BN] <1.00 [<1.00] <2.00 <50.0 NA NA NA	NA
Copper 200 9.90 B [10.2 B] 3.10 B [2.70 B] <2.00 <50.0 NA NA NA	NA
Cyanide 200 <10.0 [<10.0] <10.0 [<10.0] <10.0 <10.0 29.2 NA NA	26.0
Cyanide, Available NA NA 4 <2 <2 NA NA	4.5
Iron 300 4,690 EN [4,680 EN] 854 [888] 40.0 <1,000 NA NA NA	26.0 B
Lead 25 7.50 [8.00] <1.00 [<1.00] <4.00 <50.0 NA NA NA Magnesium 4,660 BE [4,610 BE] 1,060 B [1,220 B] 34.4 <156	NA NA
Magnesium 4,660 BE [4,610 BE] 1,060 B [1,220 B] 34.4 <156 NA NA NA Manganese 300 184 EN [182 EN] 41.8 [47.9] <2.00	<15.0
Mercury	NA
Nickel 100 9.00 BN [8.30 BN] 2.80 N [3.30 B] <3.00 <50.0 NA NA NA	NA NA
Potassium 40,100 [40,300] 43,100 [43,800] 53,000 44,700 J NA NA NA	NA
Selenium 10 2.70 BN [2.50 BN] 3.30 B [<2.00] <10.0 <150 NA NA NA	NA
Silver 50 <1.00 [<1.00] <1.00 [<1.00] <2.00 <30.0 NA NA NA	NA
Sodium 107,000 E [108,000 E] 79,300 [96,200] 150,000 192,000 NA NA NA	NA
Thallium <3.00 [<3.00] <3.00 [<3.00] <12.0 <200 NA NA NA Vanadium 8.40 BN [8.00 BN] 1.70 B [1.80 B] <2.00	NA NA
Vanadium 8.40 BN [8.00 BN] 1.70 B [1.80 B] <2.00 <30.0 NA NA NA Zinc 2,000 19.0 B [18.7 B] 13.6 B [17.0 B] 10.7 <250	NA NA
Detected Inorganics-Filtered	INA
	NA
Manganese 300 NA NA <1.00 <75.0 NA NA NA NA	NA NA
Detected Miscellaneous	
Alkalinity, CaCO3 1,660,000 [1,640,000] 1,800,000 [1,820,000] NA NA NA NA NA	NA
Available Cyanide NA NA NA NA NA NA NA NA	3,500
BOD 14,400 [17,000] 22,200 [12,300] <2,000 12,000 J NA NA NA	NA
Carbon Dioxide by Headspace NA NA <600 <600 NA NA NA NA	<100
Carbon monoxide NA NA <400 <400 NA	NA
Carbonate, CaCO3 4,300 [<2,000] 648,000 [313,000] NA NA NA NA NA COD 49,200 [49,200] 23,800 [89,000] 317,000 36,200 NA NA NA	NA NA
COLD 49,200 [49,200] 23,800 [69,000] 317,000 36,200 NA NA NA NA Chloride 250,000 241,000 [246,000] 252,000 [253,000] 215,000 270,000 NA NA NA NA	NA NA
DOC Average Quads	NA NA
Social States (Ca) 1,680,000 [1,690,000] 1,490,000 [1,530,000] NA	NA NA
Iron, Ferric NA NA NA NA NA NA NA NA NA	NA
Iron, Ferrous NA NA NA NA NA NA NA NA	NA
Methane NA NA 2,330 1,600 NA NA NA	408
Nitrate + Nitrite (as N) NA NA NA NA < 8 NA NA	490
Nitrate Nitrogen 10,000 <100 [<100] 364 [366] <100 30 B NA NA NA NA	320
Nitrite Nitrogen 1,000 187 [186] 247 [249] <100 <100 NA	170
Oil and Grease NA 1,700 [1,400] NA NA NA NA Orthophosphate NA NA NA NA NA NA	NA 35 B
	NA NA
OXVIDED NA NA 1 690 1 2200 1 NA 1 NA	11/
Oxygen NA NA 690 2,200 NA NA NA pH 12.6 [12.6] 12.44 [12.52] NA NA NA NA NA	NA
pH 12.6 [12.6] 12.44 [12.52] NA NA NA NA NA NA	NA 88,500
pH 12.6 [12.6] 12.44 [12.52] NA NA NA NA NA Sulfate 250,000 83,700 [80,000] 87,800 [91,400] 92,700 100,000 64,700 NA NA Sulfide 50 9,500 [9,100] 2,290 [2,700] <1,000	NA 88,500 1,400 B
pH 12.6 [12.6] 12.44 [12.52] NA NA NA NA NA Sulfate 250,000 83,700 [80,000] 87,800 [91,400] 92,700 100,000 64,700 NA NA	88,500

	NYSDEC TOGS 1.1.1									
Location ID:	Water Guidance	MW-3D2				MW-4S				
Date Collected:	Values	04/10/03	03/31/98	05/21/98	10/26/00	04/22/03	02/01/06	05/10/06	08/17/06	11/13/06
Detected Volatile Organics						T				
1,1,1-Trichloroethane	5	<50	<10	<10	<10	<5.0 [<5.0]	NA	NA NA	NA NA	NA NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	<50 <50	<10 <10	<10 <10	<10 <10	<5.0 [<5.0] <5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA
1,1,2-11ichloroethane	5	<50 <50	<10	<10	<10	<5.0 [<5.0] <5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA
2-Butanone		230	<10	<10	<10	6.0 J [7.0 J]	NA NA	NA NA	NA NA	NA NA
2-Hexanone	50	39 J	<10	<10	<10	<10 [<10]	NA	NA	NA	NA
4-Methyl-2-pentanone		<100	<10	<10	<10	<10 [<10]	NA	NA	NA	NA
Acetone	50	1,300 J	12	23	<10	22 [22]	NA	NA	NA	NA
Benzene	1	<50	2.0 J	5.0 J	<10	0.70 J [0.90 J]	<0.40	< 0.40	< 0.40	<0.40
Bromodichloromethane	50	<50	<10	<10	4.0 J	<5.0 [<5.0]	NA	NA	NA	NA
Bromoform	50	<50	<10	<10	0.40 J	<5.0 [<5.0]	NA	NA	NA	NA
Bromomethane	5	<50	<10	<10	<10	<5.0 [<5.0]	NA	NA	NA	NA
Carbon Disulfide		<50	<10	<10	<10	<5.0 [<5.0]	NA	NA	NA	NA
Chlorobenzene	5	<50	<10	<10	<10	<5.0 [<5.0]	NA	NA	NA	NA
Chloroform	7	<50	<10	<10	17	2.0 J [2.0 J]	NA NA	NA NA	NA NA	NA NA
Chloromethane Dibromochloromethane	50	<50 <50	<10 <10	<10 <10	<10 1.0 J	<5.0 [<5.0] <5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5	<50 <50	0.80 J	2.0 J	<10	0.60 J [0.60 J]	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	5	<9.0	<10	<10	0.80 J	<5.0 [<5.0]	NA	NA	NA	NA
Styrene	5	<50	0.30 J	<10	<10	<5.0 [<5.0]	NA	NA NA	NA NA	NA
Tetrachloroethene	5	<50	<10	<10	0.40 J	<5.0 [<5.0]	NA NA	NA NA	NA	NA.
Toluene	5	<50	8.0 J	15	<10	3.0 J [4.0 J]	<0.30	<0.30	<0.30	0.38 J
Trichloroethene	5	<50	<10	<10	<10	<5.0 [<5.0]	NA	NA	NA	NA
Vinyl Chloride	2	<50	<10	<10	<10	<5.0 [<5.0]	NA	NA	NA	NA
Xylenes (total)	5	<50	5.0 J	15	<10	4.0 J [3.0 J]	<1.0	<1.0	<1.0	<1.0
Total BTEX		<50	16 J	37 J	<10	8.3 J [8.5 J]	<1.0	<1.0	<1.0	0.38 J
Total VOCs		1,600 J	28 J	60 J	24 J	38 J [40 J]	<1.0	<1.0	<1.0	0.38 J
Detected Semivolatile Organ										
2,4-Dimethylphenol	50	<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA	NA
2,4-Dinitrophenol	10	<10,000	<25	<25	<27	<55 [<50]	NA	NA	NA	NA
2-Chloronaphthalene	10	<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA	NA
2-Methylnaphthalene		<2,000	2.0 J	4.0 J	<11	0.70 J [<10]	<0.60	<0.60	<0.60	<0.60
2-Methylphenol		<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA NA	NA NA
2-Nitrophenol 3,3'-Dichlorobenzidine	5	<2,000 <4,000	<10 <10	3.0 J <10	<11 <11	<11 [<10] <22 [<20]	NA NA	NA NA	NA NA	NA NA
4-Methylphenol		14,000	<10	<10	<11	<22 [<20] <11 [<10]	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline	5	<4.000	<25	<25	<27	<22 [<20]	NA NA	NA NA	NA NA	NA NA
Acenaphthene	20	<2,000	<10	<10	<11	<11 [<10]	<0.80	<0.80	<0.80	<0.80
Acenaphthylene		<2,000	<10	<10	<11	<11 [<10]	<0.80	<0.80	<0.80	<0.80
Anthracene	50	<2,000	<10	<10	<11	0.60 J [<10]	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene	0.002	<2,000	<10	<10	<11	<11 [<10]	<1.0	<1.0	<1.0	<0.80
Benzo(a)pyrene	0	<2,000	<10	<10	<11	<11 [<10]	<1.0	<1.0	<1.0	< 0.50
Benzo(b)fluoranthene	0.002	<2,000	<10	<10	<11	<11 [<10]	<2.0	<2.0	<2.0	<1.0
Benzo(g,h,i)perylene		<2,000	<10	<10	<11	<11 [<10]	<1.0	<1.0	<1.0	<0.30
Benzo(k)fluoranthene	0.002	<2,000	<10	<10	<11	<11 [<10]	<0.90	<0.90	<0.90	<0.90
bis(2-Ethylhexyl)phthalate	5	<2,000	<10	1.0 JB	<11	0.60 J [0.90 J]	NA	NA NA	NA NA	NA NA
Butylbenzylphthalate	50	<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA	NA
Detected Semivolatile Organ	nics	2.000	-40	-10	-44	44 [40]	NIA	NIA.	NA	l NIA
Carbazole	0.002	<2,000	<10	<10	<11	<11 [<10]	NA -1.0	NA -1.0	NA -1.0	NA -1.0
Chrysene Dibenzo(a,h)anthracene	0.002	<2,000 <2,000	<10 <10	<10 <10	<11 <11	<11 [<10] <11 [<10]	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <0.20 J
Dibenzo(a,n)anthracene Dibenzofuran		<2,000	<10	<10	<11	<11 [<10]	NA	NA	<1.0 NA	<0.20 J NA
Diethylphthalate	50	<2,000	<10	<10	0.40 J	<11 [0.40 J]	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA	NA
Di-n-Butylphthalate	50	<2,000	<10	<10	0.10 J	<11 [<10]	NA NA	NA	NA	NA
Di-n-Octylphthalate	50	<2,000	<10	<10	<11	<11 [<10]	NA NA	NA	NA	NA
Fluoranthene	50	<2,000	<10	0.50 J	<11	<11 [<10]	<1.0	<1.0	<1.0	< 0.90
Fluorene	50	<2,000	<10	<10	<11	<11 [<10]	<0.80	<0.80	<0.80	<0.70
Indeno(1,2,3-cd)pyrene	0.002	<2,000	<10	<10	<11	<11 [<10]	<1.0	<1.0	<1.0	< 0.30
Isophorone	50	<2,000	<10	<10	<11	<11 [<10]	NA	NA	NA	NA
Naphthalene	10	<2,000	3.0 J	9.0 J	0.20 J	1.0 J [<10]	<0.70	<0.70	<0.70	<0.40
Phenanthrene	50	<2,000	1.0 J	1.0 J	<11	<11 [<10]	<0.70	<0.70	<0.70	<0.70
Phenol	1	200 J	3.0 J	10	<11	0.60 J [<10]	NA	NA	NA	NA
Pyrene	50	<2,000	<10	0.50 J	0.10 J	<11 [<10]	<1.0	<1.0	<1.0	<1.0
Total PAHs		<2,000	6.0 J	15 J	0.30 J	2.3 J [<10]	<2.0	<2.0	<2.0	<1.0
Total SVOCs		14,000 J	9.0 J	29 J	0.80 J	3.5 J [1.3 J]	<2.0	<2.0	<2.0	<1.0

NYSDEC TOGS 1.1.1 Water Guidance Date Collected: Values	/17/06 11/13// NA	NA
Detected Pesticides	NA N	NA
4,4'-DDD 0.3 <0.15 NA NA <0.11 <0.16 [<0.18] NA NA 4,4'-DDE 0.2 <0.10 NA NA <0.11 <0.11 [<0.12] NA NA 4,4'-DDT 0.2 <0.10 NA NA <0.11 <0.11 [<0.12] NA NA Aldrin 0 <0.050 NA NA <0.057 <0.055 [<0.059] NA NA Alpha-BHC 0.01 <0.050 NA NA <0.057 <0.055 [<0.059] NA NA Alpha-Chlordane 0.05 0.015 J NA NA <0.057 <0.055 [<0.059] NA NA Alpha-Chlordane 0.05 0.015 J NA NA <0.057 <0.055 [<0.059] NA NA Delta-BHC <0.050 NA NA <0.057 <0.055 [<0.059] NA NA Dieldrin 0.004 <0.10 NA NA <0.015 J <0.055 [<0.059] NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	
4,4*-DDE 0.2 <0.10	NA NA NA NA NA NA NA NA NA NA NA NA	
4,4°-DDT 0.2 <0.10	NA NA NA NA NA NA NA NA NA NA	
Aldrin	NA NA NA NA NA	
Alpha-Chlordane	NA NA	NΑ
Beta-BHC	NA NA	
Delta-BHC		
Dieldrin 0.004 <0.10 NA NA <0.11 0.015 J [0.015 J] NA NA		
Endosulfan I < 0.050 NA NA < 0.057 0.041 J [0.061] NA NA Endosulfan II < 0.10	NA NA	
Endosulfan Sulfate <0.10 NA NA <0.11 <0.11 [<0.12] NA NA	NA NA	
	NA NA	
Lendrin	NA NA	
	NA NA	
Endrin Aldehyde 5 <0.10 NA NA <0.11 <0.11 [<0.12] NA NA Gamma-BHC (Lindane) 0.05 <0.050	NA NA	
Gamma-Chlordane 0.05 <0.050 NA NA <0.057 <0.055 <0.059 NA NA NA	NA NA	
Heptachlor 0.04 <0.050 NA NA <0.057 <0.055 (<0.059) NA NA NA	NA NA	
Heptachlor Epoxide 0.03 <0.050 NA NA <0.057 <0.055 [<0.059] NA NA	NA NA	
Methoxychlor 35 <0.50 NA NA <0.57 <0.55 [<0.59] NA NA	NA NA	NA
Detected Inorganics		
Aluminum <12,500 27,500 11,000 409 <5,000 [581 B] NA NA	NA NA	
Antimony 3 <500 5.70 B <4.00 <5.00 <200 [<100] NA NA Arsenic 25 <1,000	NA NA	
National 1,000 4,230 19.N 329 38.9 51.9 EJ 148.5 EJ NA NA NA 1,000 4,230 419 EN 329 38.9 51.9 EJ 148.5 EJ NA NA NA 1,000 1,0	NA NA	
1,000 1,200 1,200 1,20	NA NA	
Cadmium 5 <250 3.60 BN 4.80 B <5.00 <100 [<50.0] NA NA	NA NA	
Calcium 2,430,000 950,000 E 440,000 57,400 96,600 EJ [106,000 EJ] NA NA	NA NA	
Chromium 50 <250 32.5 N 10.6 <1.00 <100 [<50.0] NA NA	NA NA	NA
Detected Inorganics		
Cobalt <250 11.3 BN 3.40 B <1.00 <100 [<50.0] NA NA Copper 200 <250	NA NA	
	1.30 30.2	
Gyanide, Available 28 NA NA <2 <2 <2 <2 <2 NA	NA NA	
Iron 300 1,400 B 25,900 EN 9,340 13.0 <2,000 [4,000] NA NA	NA NA	
Lead 25 <250 58.6 28.4 <2.00 <100 [<50.0] NA NA	NA NA	
Magnesium 32,500 52,400 E 17,500 2,190 3,040 EJ [3,040 EJ] NA NA	NA NA	
Manganese 300 <375 2,300 EN 706 <1.00 <150 [15.4 B] NA NA	NA NA	
Mercury 0.7 <0.200 0.840 0.620 N <0.100 <0.200 J [<0.200 J] NA NA Nickel 100 85.9 B 78.7 N 11.6 B <1.50	NA NA	
100 65.3B 76.7N 11.0B \$1.50 \$1.00 \$1	NA NA	
10 10 10 10 10 10 10 10	NA NA	
Silver 50 <150 <1.00 <1.00 <1.00 <60.0 [<30.0] NA NA	NA NA	NA
Sodium 5,300,000 64,600 E 41,300 11,400 72,100 [70,900] NA NA	NA NA	
Thallium <1,000 <3.00 <3.00 <6.00 <400 [<200] NA NA	NA NA	
Vanadium <150 38.9 BN 13.6 B 2.30 <60.0 [<30.0] NA NA Zinc 2,000 <1,250	NA NA	
Zinc 2,000 <1,250 158 62.4 <5.00 <500 [<250] NA NA Detected Inorganics-Filtered	NA NA	VA
	NA NA	NΔ
Manganese 300 <75.0 NA NA <1.00 <150 (=150) NA NA	NA NA	
Detected Miscellaneous	<u> </u>	
Alkalinity, CaCO3 NA 2,620,000 800,000 NA NA NA NA NA	NA NA	NA
Available Cyanide NA NA NA NA NA NA NA	NA NA	
BOD >233,100 J <2,000 <2,000 <2,000 3,200 [6,300] NA NA NA Carbon Dinxide by Headspace <600 NA NA NA <600 <600 [6,001] NA NA NA	NA NA	
Carbon Dioxide by Headspace <600 NA NA <600 <600 [<600] NA NA Carbon monoxide <400	NA NA	
Carbonate, CaCO3 NA 1,390,000 88,100 NA NA NA NA NA	NA NA	
COD 1,080,000 21,200 <10,000 <10,000 25,200 [31,300] NA NA	NA NA	
Chloride 250,000 77,000,000 61,300 69,700 16,600 220,000 [220,000] NA NA	NA NA	NA
DOC Average Quads 40,000 NA NA 1,430 5,000 [5,100] NA NA NA	NA NA	
Hardness, Ca/CO3 NA 2,590,000 1,170,000 NA NA NA NA NA	NA NA	
Iron, Ferric NA NA NA NA NA NA Iron, Ferrous NA NA NA NA NA NA	NA NA	
Iron, Ferrous NA NA NA NA NA NA Methane 5,600 NA NA <70	NA NA	
Netrate Nitrite (as N) NA NA NA NA NA 649 NA	NA NA	
Nitrate Nitrogen 10,000 <5,000 540 1,820 376 810 [810] NA NA	NA NA	
Nitrite Nitrogen 1,000 <25,000 786 1,160 215 400 [440] NA NA	NA NA	NA
Oil and Grease NA <1,000 6,400 NA NA NA NA NA	NA NA	
Orthophosphate NA NA NA NA NA NA NA NA NA	NA NA	
Oxygen 460 NA NA 5,500 3,500 [9,300] NA	NA NA	
pH NA 12.5 12.33 NA NA NA NA Sulfate 250,000 190,000 29,700 17,700 36,000 96,000 [96,000] 18,100 NA	NA NA	
	NA NA	
TOURING DO 4,000 <2,000 <1.000 <4.000 <4.000 <4.000 NA NA	NA NA	
Sulfide 50 4,800 <2,000 <1,000 <1,000 <4,000 [<4,000] NA NA TOC Average Quads 43,000 NA NA 1,910 5,300 [5,300] NA NA		NA

	NYSDEC TOGS 1.1.1			TRACUSE, NEW TORK					
Location ID: Date Collected:	Water Guidance	03/31/98	05/21/98	10/26/00	1W-4D 04/22/03	02/06/06	05/12/06	08/15/06	11/16/06
Detected Volatile Organics	Values	03/31/98	05/21/98	10/26/00	04/22/03	02/06/06	05/12/06	08/15/06	11/16/06
1,1,1-Trichloroethane	5	<10	<10	<50 [<50]	<25	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<10	<10	<50 [<50]	<25	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	<10	<10	<50 [<50]	<25	NA NA	NA	NA NA	NA NA
1,1-Dichloroethane	5	<10	<10	<50 [<50]	<25	NA	NA	NA	NA
2-Butanone		15 J	<10	22 J [22 J]	29 J	NA	NA	NA	NA
2-Hexanone	50	<10	<10	<50 [<50]	<50	NA	NA	NA	NA
4-Methyl-2-pentanone		3.0 JB	<10	<50 [<50]	<50	NA	NA	NA	NA
Acetone	50	180	200	170 [100]	180	NA	NA	NA	NA
Benzene	1	340	390	510 [570]	160	270	270	150	440
Bromodichloromethane	50	<10	<10	<50 [<50]	<25	NA	NA	NA	NA
Bromoform	50	<10	<10	<50 [<50]	<25	NA NA	NA NA	NA NA	NA NA
Bromomethane	5	<10	<10	<50 [<50]	<25 <25	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide Chlorobenzene	5	<10 <10	<10 <10	18 J [4.0 J] <50 [<50]	<25 <25	NA NA	NA NA	NA NA	NA NA
Chloroform	7	<10	<10	<50 [<50]	<25	NA NA	NA NA	NA NA	NA NA
Chloromethane		<10	<10	<50 [<50]	<25	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	<10	<10	<50 [<50]	<25	NA NA	NA	NA.	NA NA
Ethylbenzene	5	5.0 J	6.0 J	10 J [11 J]	27	12	13 J	38	17 J
Methylene Chloride	5	<10	<10	18 J [10 J]	<25	NA	NA NA	NA NA	NA NA
Styrene	5	<10	<10	<50 [<50]	56	NA	NA	NA	NA
Tetrachloroethene	5	<10	<10	7.0 J [2.0 J]	<25	NA	NA	NA	NA
Toluene	5	42	50	110 [120]	130	95	110	320	110
Trichloroethene	5	<10	<10	8.0 J [1.0 J]	<25	NA	NA	NA	NA
Vinyl Chloride	2	<10	<10	<50 [<50]	<25	NA	NA	NA	NA
Xylenes (total)	5	45	56	81 [94]	300	120	150	490	180
Total BTEX		430 J	500 J	710 J [800 J]	620	500	540 J	1,000	750 J
Total VOCs		630 J	700 J	950 J [930 J]	880 J	500	540 J	1,000	750 J
Detected Semivolatile Organ									
2,4-Dimethylphenol	50	4.0 J	5.0 J	6.0 J [5.0 J]	<590	NA	NA	NA	NA
2,4-Dinitrophenol	10	<25	<25	<54 [<50]	<2,900	NA	NA	NA	NA
2-Chloronaphthalene 2-Methylnaphthalene	10	<10 4.0 J	<10 4.0 J	<22 [<20] 2.0 J [2.0 J]	<590 130 J	NA 32 J	NA 23 J	NA 21 J	NA 37 J
2-Methylphenol		1.0 J	2.0 J	4.0 J [4.0 J]	<590	NA	NA	NA NA	NA NA
2-Nitrophenol		<10	<10	4.0 3 [4.0 3] <22 [<20]	<590 <590	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	<10	<10	<22 [<20]	<1,200	NA NA	NA NA	NA NA	NA NA
4-Methylphenol		6.0 J	8.0 J	16 J [15 J]	<590	NA.	NA.	NA.	NA NA
4-Nitroaniline	5	<25	<25	<54 [<50]	<1.200	NA	NA	NA	NA
Acenaphthene	20	<10	<10	<22 [<20]	<590	<20	<16	<8.0	<9.0
Acenaphthylene		0.50 J	0.50 J	0.20 J [0.20 J]	42 J	<19	<15	<8.0	10 J
Anthracene	50	<10	<10	<22 [<20]	<590	<25	<20	<10	<11
Benzo(a)anthracene	0.002	<10	<10	<22 [<20]	<590	<30	<24	<12	<8.0
Benzo(a)pyrene	0	<10	<10	<22 [<20]	<590	<27	<22	<11	<5.0
Benzo(b)fluoranthene	0.002	<10	<10	<22 [<20]	<590	<38	<31	<15	<10
Benzo(g,h,i)perylene		<10	<10	<22 [<20]	<590	<26	<21	<10	<3.0
Benzo(k)fluoranthene	0.002	<10	<10	<22 [<20]	<590	<23	<18	<9.0	<10
bis(2-Ethylhexyl)phthalate	5	0.80 J	1.0 JB	<22 [0.50 J]	<590	NA	NA	NA	NA
Butylbenzylphthalate	50	<10	<10	<22 [<20]	<590	NA	NA	NA	NA
Detected Semivolatile Organ									
Carbazole		<10	<10	<22 [<20]	30 J	NA 04	NA 10	NA 40	NA 10
Chrysene	0.002	<10	<10	<22 [<20]	<590	<24	<19 <27	<10	<13
Dibenzo(a,h)anthracene		<10	<10 <10	<22 [<20]	<590 <590	<34 NA	NA	<13 NA	<3.0 NA
Dibenzofuran Diethylphthalate	50	<10 <10	0.20 J	<22 [<20] 0.80 [0.80 J]	<590 <590	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<10	<10	<22 [<20]	<590	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	<10	0.20 JB	<22 [<20]	<590	NA NA	NA NA	NA	NA NA
Di-n-Octylphthalate	50	<10	<10	<22 [<20]	<590	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<10	<10	<22 [<20]	<590	<27	<22	<11	<10
Fluorene	50	<10	<10	<22 [<20]	<590	<19	<15	<8.0	<8.0
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<22 [<20]	<590	<29	<23	<12	<3.0
Isophorone	50	<10	0.20 J	<22 [<20]	<590	NA	NA	NA	NA
Naphthalene	10	55	60	91 [88]	2,900	710	810	570	760
Phenanthrene	50	<10	<10	<22 [<20]	<590	<16	<13	<7.0	<8.0
Phenol	1	27	39	100 [97]	55 J	NA	NA	NA	NA
Pyrene	50	<10	<10	<22 [<20]	<590	<25	<20	<10	<11
Total PAHs		60 J	65 J	93 J [90 J]	3,100 J	740 J	830 J	590 J	810 J
Total SVOCs		98 J	120 J	220 J [210 J]	3,200 J	740 J	830 J	590 J	810 J

	NYSDEC TOGS 1.1.1											
Location ID:	Water Guidance				/W-4D							
Date Collected:	Values	03/31/98	05/21/98	10/26/00	04/22/03	02/06/06	05/12/06	08/15/06	11/16/06			
Detected Pesticides	2.2	N1A	l NA I	0.441.0.441	0.47		L					
4,4'-DDD 4,4'-DDE	0.3 0.2	NA NA	NA NA	<0.11 [<0.11] <0.11 [<0.11]	<0.17 <0.11	NA NA	NA NA	NA NA	NA NA			
4,4'-DDT	0.2	NA NA	NA NA	<0.11 [<0.11]	<0.11	NA NA	NA NA	NA NA	NA NA			
Aldrin	0.2	NA NA	NA NA	<0.054 [<0.054]	<0.056	NA NA	NA NA	NA NA	NA NA			
Alpha-BHC	0.01	NA	NA	<0.054 [<0.054]	<0.056	NA	NA	NA	NA			
Alpha-Chlordane	0.05	NA	NA	<0.054 [<0.054]	< 0.056	NA	NA	NA	NA			
Beta-BHC		NA	NA	<0.054 [<0.054]	< 0.056	NA	NA	NA	NA			
Delta-BHC		NA	NA	<0.054 [<0.054]	0.036 J	NA	NA	NA	NA			
Dieldrin	0.004	NA	NA	<0.11 [<0.11]	<0.11	NA	NA	NA	NA			
Endosulfan I		NA NA	NA NA	<0.054 [<0.054]	<0.056	NA NA	NA NA	NA NA	NA NA			
Endosulfan II Endosulfan Sulfate		NA NA	NA NA	<0.11 [<0.11]	<0.11 <0.11	NA NA	NA NA	NA NA	NA NA			
Endrin Sullate	0	NA NA	NA NA	<0.11 [<0.11] <0.11 [<0.11]	<0.11	NA NA	NA NA	NA NA	NA NA			
Endrin Aldehyde	5	NA NA	NA NA	<0.11 [<0.11]	<0.11	NA NA	NA NA	NA NA	NA NA			
Gamma-BHC (Lindane)	0.05	NA NA	NA NA	<0.054 [<0.054]	<0.056	NA.	NA NA	NA NA	NA			
Gamma-Chlordane	0.05	NA NA	NA	<0.054 [<0.054]	<0.056	NA NA	NA	NA NA	NA NA			
Heptachlor	0.04	NA	NA	<0.054 [<0.054]	0.0094 J	NA	NA	NA	NA			
Heptachlor Epoxide	0.03	NA	NA	<0.054 [<0.054]	< 0.056	NA	NA	NA	NA			
Methoxychlor	35	NA	NA	<0.54 [<0.54]	<0.56	NA	NA	NA	NA			
Detected Inorganics												
Aluminum		1,520	11,900	<100 [<100]	<2,500	NA	NA	NA	NA			
Antimony	3	<4.00	<80.0	<50.0 [<50.0]	<100	NA	NA	NA	NA			
Arsenic	25	6.50 B	<40.0	<25.0 [<25.0]	<200	NA	NA	NA	NA			
Barium	1,000	118 BEN	484 B	418 [388]	216 EJ	NA	NA	NA	NA			
Beryllium		3.80 BN	<20.0	<5.00 [<5.00]	<25.0	NA	NA NA	NA NA	NA NA			
Cadmium	5	<1.00 238,000 E	<20.0 1,070,000	<5.00 [<5.00] 1,130,000 [1,080,000]	<50.0 695,000 EJ	NA NA	NA NA	NA NA	NA NA			
Calcium Chromium	50	1.60 BN	<20.0	<10.0 [<10.0]	<50.0	NA NA	NA NA	NA NA	NA NA			
Detected Inorganics	30	1.00 BN	<20.0	<10.0 [<10.0]	₹30.0	INA	INA	INA	INA			
Cobalt		1.40 BN	<20.0	<10.0 [<10.0]	<50.0	NA	NA	NA	NA			
Copper	200	3.60 B	<20.0	22.1 [0]	<50.0	NA NA	NA NA	NA NA	NA NA			
Cyanide	200	14.4	<10.0	<10.0 [<10.0]	21.3	17.5	13.3	<1.30	R			
Cyanide, Available		NA	NA	<2	4	<2	NA	NA	NA			
Iron	300	1,200 EN	5,800	103 [<100]	<1,000	NA	NA	NA	NA			
Lead	25	1.80 B	<20.0	<20.0 [<20.0]	<50.0	NA	NA	NA	NA			
Magnesium		15,800 E	91,300 B	65,000 [61,000]	101,000 EJ	NA	NA	NA	NA			
Manganese	300	64.8 EN	252 B	113 [106]	46.3 B	NA	NA	NA	NA			
Mercury	0.7	<0.200	0.310 N	<0.100 [<0.100]	<0.200 J	NA	NA	NA	NA			
Nickel	100	2.80 BN	292 B	<15.0 [<15.0]	<50.0	NA	NA	NA	NA			
Potassium		166,000	505,000	606,000 [551,000]	205,000	NA NA	NA NA	NA NA	NA NA			
Selenium Silver	10 50	<2.00 <1.00	<40.0 <20.0	<50.0 [<50.0] <10.0 [<10.0]	<150 <30.0	NA NA	NA NA	NA NA	NA NA			
Sodium		1,160,000 E	2,900,000	3,690,000 [3,650,000]	4,850,000	NA NA	NA NA	NA NA	NA NA			
Thallium		<3.00	<60.0	<60.0 [<60.0]	<200	NA NA	NA	NA NA	NA NA			
Vanadium		2.10 BN	22.1 B	<10.0 [<10.0]	<30.0	NA NA	NA NA	NA NA	NA NA			
Zinc	2,000	17.8 B	92.9 B	<50.0 [<50.0]	<250	NA	NA	NA	NA			
Detected Inorganics-Filtered				•								
Iron	300	NA	NA	<100 [<100]	<2,000	NA	NA	NA	NA			
Manganese	300	NA	NA	82.1 [83.2]	54.4 B	NA	NA	NA	NA			
Detected Miscellaneous												
Alkalinity, CaCO3		384,000	88,900	NA	NA	NA	NA	NA	NA			
Available Cyanide		NA	NA	NA	NA	NA	NA	NA	NA			
BOD		57,600	81,000	81,000 [87,000]	62,000	NA	NA	NA	NA			
Carbon Dioxide by Headspace		NA NA	NA NA	15,620	120,000	NA NA	NA NA	NA NA	NA NA			
Carbon monoxide		NA 6 500	NA -2.000	<400 NA	<400	NA NA	NA NA	NA NA	NA NA			
Carbonate, CaCO3 COD		6,500 518.000	<2,000 352,000	NA 2.020.000 [1.830.000]	NA 489,000	NA NA	NA NA	NA NA	NA NA			
Chloride	250,000	41,900,000	<10,000,000	47,000,000 [45,600,000]	33,000,000	NA NA	NA NA	NA NA	NA NA			
DOC Average Quads		NA	NA	33,200 [34,000]	40,000	NA NA	NA NA	NA NA	NA NA			
Hardness, Ca/CO3		659,000	3,040,000	NA	NA	NA	NA	NA	NA			
Iron, Ferric		NA	NA NA	NA NA	NA	NA	NA	NA	NA			
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA			
Methane		NA	NA	6,860	6,700	NA	NA	NA	NA			
Nitrate + Nitrite (as N)		NA	NA	NA	NA	<4,000	NA	NA	NA			
Nitrate Nitrogen	10,000	110	<100	<100 [<100]	<5,000	NA	NA	NA	NA			
Nitrite Nitrogen	1,000	<5	<5	<100 [<100]	<25,000	NA	NA	NA	NA			
Oil and Grease		<1,000	<1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			
Orthophosphate		NA NA	NA NA	NA 1,070	NA 520	NA NA	NA NA	NA NA	NA NA			
Oxygen pH		8.42	NA 8.12	1,070 NA	520 NA	NA NA	NA NA	NA NA	NA NA			
Sulfate	250,000	599,000	209.000	405,000 [403,000]	560,000	617,000	NA NA	NA NA	NA NA			
				70,500 [68,100]	78,000	NA	NA NA	NA NA	NA NA			
	50	68,800	02.400									
Sulfide TOC Average Quads	50 	68,800 NA	62,400 NA	34,800 [34,300]	40,000	NA NA	NA NA	NA NA	NA			

	NYSDEC TOGS 1.1.1										
Location ID:	Water Guidance			MW-5S					MW-50		
Date Collected:	Values	03/30/98	05/20/98	10/26/00	04/09/03	02/02/06	03/30/98	05/20/98	10/26/00	04/10/03	01/25/06
Detected Volatile Organics											
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0 [<5.0]	NA	<10	<10	<10	<5.0	NA NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	<10 <10	<10 <10	<10 <10	<5.0 [<5.0] <5.0 [<5.0]	NA NA	<10 <10	<10 <10	<10 <10	<5.0 <5.0	NA NA
1.1-Dichloroethane	5	<10	<10	<10	<5.0 [<5.0] <5.0 [<5.0]	NA NA	<10	<10	<10	<5.0 <5.0	NA NA
2-Butanone		<10	<10	<10	<10 [<10]	NA NA	<10	<10	8.0 J	<10	NA NA
2-Hexanone	50	<10	<10	<10	<10 [<10]	NA	<10	<10	<10	<10	NA
4-Methyl-2-pentanone		<10	<10	<10	<10 [<10]	NA	<10	<10	<10	<10	NA
Acetone	50	<10	<10	10	<10 [<10]	NA	48	28 B	24	19 J	NA
Benzene	1 50	3.0 J	5.0 J	3.0 J	<5.0 [<5.0]	<0.40	16	14	12	12	2.0 J [1.9 J]
Bromodichloromethane Bromoform	50 50	<10 <10	<10 <10	<10 <10	<5.0 [<5.0] <5.0 [<5.0]	NA NA	<10 <10	<10 <10	<10 <10	<5.0 <5.0	NA NA
Bromomethane	5	<10	<10	<10	<5.0 J [<5.0]	NA NA	<10	<10	<10	<5.0 J	NA NA
Carbon Disulfide		<10	<10	0.10 J	<5.0 [<5.0]	NA	17	<10	1.0	<5.0	NA
Chlorobenzene	5	<10	<10	<10	<5.0 [<5.0]	NA	<10	<10	<10	<5.0	NA
Chloroform	7	<10	<10	<10	<5.0 [<5.0]	NA	<10	<10	<10	<5.0	NA
Chloromethane		<10	<10	<10	<5.0 J [<5.0 J]	NA	<10	<10	<10	<5.0 J	NA NA
Dibromochloromethane Ethylbenzene	50 5	<10 <10	<10 <10	<10 0.30 J	<5.0 [<5.0] <5.0 [<5.0]	NA <1.0	<10 10	<10 8.0 J	<10 6.0	<5.0 13	NA 2.5 J [2.5 J]
Methylene Chloride	5	<10 <10	<10 <10	0.30 J 2.0	<5.0 [<5.0] <0.40 [<0.40]	<1.0 NA	10 <10	8.0 J <10	0.60 J	0.50 J	2.5 J [2.5 J] NA
Styrene	5	<10	0.90 J	<10	<5.0 [<5.0]	NA NA	<10	<10	<10	<10	NA NA
Tetrachloroethene	5	<10	<10	<10	<5.0 [<5.0]	NA NA	<10	<10	<10	<5.0	NA NA
Toluene	5	4.0 J	8.0 J	2.0 J	<5.0 [<5.0]	< 0.30	26	30	20	26	3.7 J [4.0 J]
Trichloroethene	5	<10	<10	<10	<5.0 [<5.0]	NA	<10	<10	<10	<5.0	NA
Vinyl Chloride	2	<10	<10	<10	<5.0 [<5.0]	NA	<10	<10	<10	<5.0	NA
Xylenes (total)	5	<10 7.0 J	8.0 J	1.0 J	<5.0 [<5.0]	<1.0	62 110	61 110 J	35	110	16 [16]
Total BTEX Total VOCs		7.0 J	21 J 22 J	6.3 J 18 J	<5.0 [<5.0] <10 [<10]	<1.0 <1.0	180	140 J	73 110 J	160 180 J	24 J [24 J] 24 J [24 J]
Detected Semivolatile Organ		7.03	22 3	10 3	<10 [<10]	<1.0	160	140 3	1103	180 3	24 3 [24 3]
2,4-Dimethylphenol	50	<10	1.0 J	<10	<12 [<11]	l NA	1.0 J	1.0 J	2.0 J	<40	NA NA
2,4-Dinitrophenol	10	<25	<25	<25	<62 [<55]	NA.	<25	<25	<26	<200	NA NA
2-Chloronaphthalene	10	<10	<10	<10	<12 [<11]	NA	<10	<10	<11	<40	NA
2-Methylnaphthalene		3.0 J	3.0 J	0.20 J	<12 [<11]	< 0.60	12 J	14 J	13	22 J	8.0 J [8.0 J]
2-Methylphenol		1.0 J	3.0 J	1.0 J	<12 [<11]	NA	2.0 J	2.0 J	3.0 J	<40	NA
2-Nitrophenol	 5	<10	<10	<10	<12 [<11]	NA NA	<10	<10	<11	<40	NA NA
3,3'-Dichlorobenzidine 4-Methylphenol	5	<10 0.80 J	<10 2.0 J	<10 1.0 J	<25 [<22] <12 [<11]	NA NA	<10 5.0 J	<10 5.0 J	<11 4.0 J	<80 <40	NA NA
4-Nitroaniline	5	<25	<25	<25	<25 [<22]	NA NA	<25	<25	<26	<80	NA NA
Acenaphthene	20	<10	0.20 J	<10	<12 [<11]	<0.80	0.70 J	0.90 J	1.0 J	2.0 J	1.0 J [<0.80]
Acenaphthylene		0.30 J	0.30 J	<10	<12 [<11]	<0.80	3.0 J	3.0 J	3.0 J	3.0 J	2.0 J [2.0 J]
Anthracene	50	0.090 J	0.10 J	<10	<12 [<11]	<1.0	<10	<10	<11	<40	<1.0 [<1.0]
Benzo(a)anthracene	0.002	<10	0.30 J	<10	<12 [<11]	<1.0	<10	<10	<11	<40	<1.0 [<1.0]
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	<10 <10	0.30 J 0.20 J	<10 <10	<12 [<11] <12 [<11]	<1.0 <2.0	<10 <10	<10 <10	<11 <11	<40 <40	<1.0 [<1.0] <2.0 [<2.0]
Benzo(g,h,i)perylene	0.002	<10	<10	<10	<12 [<11]	<1.0	<10	<10	<11	<40 <40	<1.0 [<2.0]
Benzo(k)fluoranthene	0.002	<10	0.30 J	<10	<12 [<11]	<0.90	<10	<10	<11	<40	<0.90 [<0.90]
bis(2-Ethylhexyl)phthalate	5	2.0 J	0.90 JB	0.40 J	<12 [<11]	NA	2.0 J	0.90 JB	0.40 J	<40	NA
Butylbenzylphthalate	50	<10	<10	<10	<12 [<11]	NA	<10	<10	<11	<40	NA
Detected Semivolatile Organ											
Carbazole		<10	0.20 J	<10	<12 [<11]	NA .	<10	<10	0.80 J	<40	NA 10[10]
Chrysene Dibenzo(a,h)anthracene	0.002	<10 <10	0.30 J <10	<10 <10	<12 [<11] <12 [<11]	<1.0 <1.0	<10 <10	<10 <10	<11 <11	<40 <40	<1.0 [<1.0] <1.0 [<1.0]
Dibenzo(a,n)anthracene Dibenzofuran		<10	0.20 J	<10	<12 [<11]	NA	<10	<10	0.30 J	<40 <40	<1.0 [<1.0] NA
Diethylphthalate	50	<10	0.20 J	0.80 J	<12 [<11]	NA NA	<10	<10	<11	<40	NA NA
Dimethylphthalate	50	<10	<10	<10	<12 [<11]	NA	<10	<10	<11	<40	NA
Di-n-Butylphthalate	50	0.40 J	0.30 JB	<10	<12 [<11]	NA	0.50 J	<10	<11	<40	NA
Di-n-Octylphthalate	50	<10	<10	<10	<12 [<11]	NA	<10	<10	<11	<40	NA
Fluoranthene	50	<10	0.30 J	0.10 J	<12 [<11]	<1.0	<10	<10	<11	<40	<1.0 [<1.0]
Fluorene Indeno(1,2,3-cd)pyrene	50 0.002	<10 <10	<10 <10	<10 <10	<12 [<11] <12 [<11]	<0.80 <1.0	<10 <10	0.50 J <10	1.0 J <11	<40 <40	0.90 J [0.90 J] <1.0 [<1.0]
Isophorone	50	<10	<10	<10	<12 [<11]	NA	<10	<10	<11	<40 <40	<1.0 [<1.0] NA
Naphthalene	10	7.0 J	9.0 J	1.0 J	<12 [<11]	<0.70	110	99	72	180	45 [43]
Phenanthrene	50	0.40 J	0.60 J	0.10 J	<12 [<11]	<0.70	<10	<10	<11	<40	<0.70 [<0.70]
Phenol	1	0.50 J	1.0 J	0.40 J	<12 [<11]	NA	2.0 J	2.0 J	<11	4.0 J	NA
Pyrene	50	<10	0.30 J	0.10 J	<12 [<11]	<1.0	<10	<10	<11	<40	<1.0 [<1.0]
Total PAHs		11 J	15 J	1.5 J	<12 [<11]	<2.0	130 J	120 J	90 J	210 J	57 J [54 J]
Total SVOCs		16 J	24 J	5.1 J	<62 [<55]	<2.0	140 J	130 J	100 J	210 J	57 J [54 J]

					•						
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-5S					MW-5	D	
Date Collected:	Values	03/30/98	05/20/98	10/26/00	04/09/03	02/02/06	03/30/98	05/20/98	10/26/00	04/10/03	01/25/06
Detected Pesticides		1									
4,4'-DDD	0.3	NA	NA	<0.12	<0.16 [<0.17]	NA	NA	NA	<0.10	<0.15	NA
4,4'-DDE 4,4'-DDT	0.2 0.2	NA NA	NA NA	<0.12 <0.12	<0.11 [<0.11] <0.11 [<0.11]	NA NA	NA NA	NA NA	<0.10 <0.10	<0.10 <0.10	NA NA
Aldrin	0.2	NA NA	NA NA	<0.12	<0.055 [<0.056]	NA NA	NA NA	NA NA	<0.10	<0.10	NA NA
Alpha-BHC	0.01	NA	NA NA	<0.059	<0.055 [<0.056]	NA	NA	NA NA	<0.050	<0.050	NA NA
Alpha-Chlordane	0.05	NA	NA	< 0.059	<0.055 [<0.056]	NA	NA	NA	<0.050	<0.050	NA
Beta-BHC		NA	NA	<0.059	<0.055 [<0.056]	NA	NA	NA	<0.050	<0.050	NA
Delta-BHC	0.004	NA NA	NA NA	0.0096 J <0.12	<0.055 [0.0070 J]	NA NA	NA NA	NA NA	<0.050 <0.10	0.023 J <0.10	NA NA
Dieldrin Endosulfan I	0.004	NA NA	NA NA	<0.12	<0.11 [<0.11] <0.055 [<0.056]	NA NA	NA NA	NA NA	<0.050	<0.10	NA NA
Endosulfan II		NA NA	NA NA	<0.12	<0.11 [<0.11]	NA.	NA NA	NA NA	<0.10	<0.10	NA NA
Endosulfan Sulfate		NA	NA	<0.12	<0.11 [<0.11]	NA	NA	NA	<0.10	<0.10	NA
Endrin	0	NA	NA	<0.12	<0.11 [<0.11]	NA	NA	NA	<0.10	<0.10	NA
Endrin Aldehyde	5	NA	NA NA	<0.12	<0.11 [<0.11]	NA	NA NA	NA NA	<0.10	<0.10	NA NA
Gamma-BHC (Lindane) Gamma-Chlordane	0.05 0.05	NA NA	NA NA	<0.059 <0.059	<0.055 [<0.056] <0.055 [<0.056]	NA NA	NA NA	NA NA	<0.050 <0.050	<0.050 <0.050	NA NA
Heptachlor	0.04	NA NA	NA NA	<0.059	<0.055 [<0.056]	NA NA	NA NA	NA NA	<0.050	<0.050	NA NA
Heptachlor Epoxide	0.03	NA	NA	<0.059	<0.055 [<0.056]	NA	NA	NA	<0.050	<0.050	NA NA
Methoxychlor	35	NA	NA	<0.59	<0.55 [<0.56]	NA	NA	NA	<0.50	<0.50	NA
Detected Inorganics											
Aluminum		8,390	26,200	175	527 JB [472 JB]	NA	1,600	2,590	<100	<12,500	NA NA
Antimony	3	<4.00	6.30 B 67.4	<5.00	<100 [<100]	NA NA	<4.00 10.3	<4.00 15.0	<50.0	<500	NA NA
Arsenic Barium	25 1,000	13.6 66.7 BEN	139 B	27.9 18.9	<200 [<200] <25.0 [<25.0]	NA NA	10.3 68.8 BEN	79.2 B	<25.0 43.7	<1,000 71.3 B	NA NA
Beryllium		<1.00	2.10 B	<5.00	<25.0 [<25.0]	NA NA	1.60 BN	2.10 B	<5.00	<125	NA NA
Cadmium	5	2.10 BN	4.60 B	<5.00	<50.0 [<50.0]	NA	1.40 BN	<1.00	<5.00	<250	NA
Calcium		570,000 E	1,160,000	114,000	44,800 [44,900]	NA	193,000 E	300,000	176,000	216,000	NA
Chromium	50	21.7 N	68.7	1.20	19.6 B [19.8 B]	NA	3.60 BN	4.60 B	<10.0	<250	NA
Detected Inorganics	1										
Cobalt	200	4.60 BN 68.8	17.9 B 224	<1.00 2.20	<50.0 [<50.0 J] <50.0 J [13.5 B]	NA NA	1.00 BN 9.50 B	2.00 B 10.7 B	<10.0 <10.0	<250 <250	NA NA
Copper Cyanide	200	<10.0	69.0	<10.0	16.1 [20.4]	9.70 B	9.50 B <10.0	<10.0	<10.0	5.40 B	8.60 B [13.7]
Cyanide, Available		NA	NA	<2	3	<2	NA	NA	<2	8	<2
Iron	300	9,540 EN	29,300	110	721 B [730 B]	NA	2,500 EN	4,190	<100	<5,000	NA
Lead	25	31.7	97.2	<2.00	<50.0 [<50.0]	NA	3.90	9.50	<20.0	<250	NA
Magnesium		20,300 E	87,300	2,150	4,450 [4,470]	NA	23,800 E	38,900	25,900	4,550	NA
Manganese	300 0.7	1,090 EN 0.380	3,850 0.720 N	10.4 <0.100	<75.0 [52.0 B] <0.200 [<0.200]	NA NA	124 EN <0.200	238 <0.200	11.1 <0.100	<375 <0.200	NA NA
Mercury Nickel	100	18.5 BN	53.8	2.20	<50.0 [<50.0]	NA NA	6.80 BN	6.00 B	<15.0	<250	NA NA
Potassium		44,900	57,500	55,100	8,210 J [8,340 J]	NA NA	81,000	104,000	74,500	61,400 J	NA NA
Selenium	10	2.20 BN	7.00	<5.00	<150 [<150]	NA	<2.00	<2.00	<50.0	<750	NA
Silver	50	<1.00	<1.00	<1.00	<30.0 [<30.0]	NA	<1.00	<1.00	<10.0	<150	NA
Sodium		97,400	97,100	99,200	45,100 [45,300]	NA	83,500 E	44,300	2,230,000	1,160,000	NA NA
Thallium Vanadium		<3.00 21.6 BN	<3.00 65.0	<6.00 4.60	<200 [<200] 8.40 B [9.20 B]	NA NA	<3.00 3.20 BN	<3.00 5.60 B	<60.0 <10.0	<1,000 <150	NA NA
Zinc	2,000	98.6	329	42.7	<250 [<250]	NA NA	19.3 B	47.1	<50.0	<1,250	NA NA
Detected Inorganics-Filtered		00.0	020		4200 [4200]		10.0 5		400.0	11,200	
Iron	300	NA	NA	27.4	<1,000 [<1,000]	NA	NA	NA	<100	<1,000	NA
Manganese	300	NA	NA	<1.00	<75.0 [<75.0]	NA	NA	NA	15.6	<75.0	NA
Detected Miscellaneous					_						
Alkalinity, CaCO3		1,200,000	363,000	NA	NA NA	NA	224,000	98,300	NA	NA NA	NA NA
Available Cyanide BOD		NA 4,800	NA 4,800	NA 3,300	NA 5,900 J [5,900 J]	NA NA	NA 28,800	NA 36,000	NA 48,000	NA 13,000 J	NA NA
Carbon Dioxide by Headspace		4,800 NA	4,800 NA	<600	<600 [<600]	NA NA	28,800 NA	36,000 NA	48,000 <600	<600	NA NA
Carbon monoxide		NA	NA	<400	<400 [<400]	NA	NA NA	NA NA	<400	<400	NA NA
Carbonate, CaCO3		224,000	53,800	NA	NA	NA	57,600	2,960	NA	NA	NA
COD		34,100	28,000	12,200	16,700 [12,900]	NA	52,000	110,000	294,000	73,400	NA
Chloride	250,000	146,000	278,000	206,000	69,000 [69,000]	NA	5,330,000	9,830,000	10,400,000	2,500,000	NA NA
DOC Average Quads Hardness, Ca/CO3		NA 1,510,000	NA 3,260,000	3,670 NA	4,100 [4,200] NA	NA NA	NA 580,000	NA 910,000	15,400 NA	9,700.00000000001 NA	NA NA
Iron, Ferric		1,510,000 NA	3,260,000 NA	NA NA	NA NA	NA NA	580,000 NA	910,000 NA	NA NA	NA NA	NA NA
Iron, Ferrous		NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		NA	NA	830	1.5 [0.9]	NA	NA	NA	4,760	1,600	NA
Nitrate + Nitrite (as N)		NA	NA	NA	NA	576	NA	NA	NA	NA	<400 [<400]
Nitrate Nitrogen	10,000	<100	202	<100	2,300 [2,200]	NA NA	<100	<100	<100	<100	NA NA
Nitrite Nitrogen Oil and Grease	1,000	56 <1,000	92 <1,000	<100 NA	510 [510] NA	NA NA	<5 <1,000	<5 3,900	<100 NA	<500 NA	NA NA
Orthophosphate		<1,000 NA	<1,000 NA	NA NA	NA NA	NA NA	<1,000 NA	3,900 NA	NA NA	NA NA	NA NA
Oxygen		NA NA	NA NA	1,190	7,500 [8,000]	NA NA	NA NA	NA NA	850	820	NA NA
pH		12.2	11.86	NA	NA	NA	9.82	8.79	NA NA	NA	NA NA
Sulfate	250,000	170,000	211,000	147,000	74,000 [74,000]	83,200	226,000	97,100	250,000	140,000	210,000 [224,000]
Sulfide	50	3,000	<1,000	2,000	<1,000 [<1,000]	NA	28,700	29,100	12,800	23,000	NA
		NA	NA	5,960	4,300 [5,400]	NA	. NIA	NA	15,800	10,000	NA
TOC Average Quads Total Dissolved Solids	1,000,000	960,000	1,050,000	NA	4,300 [3,400] NA	NA NA	NA 10,100,000	15,600,000	NA	NA	NA NA

L and the ID	NYSDEC TOGS 1.1.1				MW CO			
Location ID: Date Collected:	Water Guidance Values	05/21/98	10/30/00	04/08/03	MW-6S 02/07/06	05/11/06	08/17/06	11/16/06
Detected Volatile Organics	values	03/21/30	10/30/00	04/00/03	02/01/00	03/11/00	00/17/00	11/10/00
1,1,1-Trichloroethane	5	<10	<10	<5.0	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<10	<10	<5.0	NA	NA	NA	NA
1,1,2-Trichloroethane	1	<10	<10	<5.0	NA	NA	NA	NA
1,1-Dichloroethane	5	<10	<10	<5.0	NA	NA	NA	NA
2-Butanone	 50	<10	<10	<10	NA NA	NA NA	NA	NA NA
2-Hexanone 4-Methyl-2-pentanone	50	<10 <10	<10 <10	<10 <10	NA NA	NA NA	NA NA	NA NA
Acetone	50	<10	<10	<10	NA NA	NA NA	NA NA	NA NA
Benzene	1	<10	<10	<5.0	<0.40	<0.40	<0.40	<0.40
Bromodichloromethane	50	<10	<10	<5.0	NA	NA	NA	NA
Bromoform	50	<10	<10	<5.0	NA	NA	NA	NA
Bromomethane	5	<10	<10	<5.0 J	NA	NA	NA	NA
Carbon Disulfide Chlorobenzene	5	<10	<10 <10	<5.0	NA NA	NA NA	NA NA	NA NA
Chloroform	7	<10 <10	<10	<5.0 4.0 J	NA NA	NA NA	NA NA	NA NA
Chloromethane		<10	<10	<5.0 J	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	<10	<10	<5.0	NA	NA	NA	NA
Ethylbenzene	5	<10	<10	<5.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	5	<10	4.0 J	<0.40	NA	NA	NA	NA
Styrene	5	<10	<10	<5.0	NA	NA	NA	NA
Tetrachloroethene	5	<10	<10	<5.0	NA 0.20	NA 0.00	NA 0.00	NA O 20
Toluene Trichloroethene	5 5	<10 <10	1.0 J <10	<5.0 <5.0	<0.30 NA	<0.30 NA	<0.30 NA	<0.30 NA
Vinyl Chloride	2	<10	<10	<5.0	NA NA	NA NA	NA NA	NA NA
Xylenes (total)	5	<10	<10	<5.0	<1.0	<1.0	<1.0	<1.0
Total BTEX		<10	1.0 J	<5.0	<1.0	<1.0	<1.0	<1.0
Total VOCs		<10	5.0 J	4.0 J	<1.0	<1.0	<1.0	<1.0
Detected Semivolatile Organ	nics							
2,4-Dimethylphenol	50	<10	<10	<12	NA	NA	NA	NA
2,4-Dinitrophenol	10	<25	<26	<62	NA	NA	NA	NA
2-Chloronaphthalene 2-Methylnaphthalene	10	<10 <10	<10 <10	<12 <12	NA <0.60	NA <0.60	NA <0.60	NA <0.70
2-Methylphenol		<10	<10	<12	<0.60 NA	<0.60 NA	<0.60 NA	<0.70 NA
2-Nitrophenol		<10	<10	<12	NA NA	NA NA	NA NA	NA
3,3'-Dichlorobenzidine	5	<10	<10	<25	NA	NA	NA	NA
4-Methylphenol		<10	<10	<12	NA	NA	NA	NA
4-Nitroaniline	5	<25	<26	<25	NA	NA	NA	NA
Acenaphthene	20	<10	<10	<12	<0.80	<0.80	<0.80	<0.90
Acenaphthylene Anthracene	50	<10 <10	<10 <10	<12 <12	<0.80 <1.0	<0.80 <1.0	<0.80 <1.0	<0.80 <1.0
Benzo(a)anthracene	0.002	<10	<10	<12	<1.0	<1.0	<1.0	<0.80
Benzo(a)pyrene	0.002	<10	<10	<12	<1.0	<1.0	<1.0	<0.50
Benzo(b)fluoranthene	0.002	<10	<10	<12	<2.0	<2.0	<2.0	<1.0
Benzo(g,h,i)perylene		<10	<10	<12	<1.0	<1.0	<1.0	< 0.30
Benzo(k)fluoranthene	0.002	<10	<10	<12	<0.90	< 0.90	<0.90	<1.0
bis(2-Ethylhexyl)phthalate	5	<10	0.20 J	0.70 J	NA	NA	NA	NA
Butylbenzylphthalate	50	<10	<10	<12	NA	NA	NA	NA
Detected Semivolatile Organ Carbazole	ICS	<10	<10	<12	NA	NA	NA	NA
Chrysene	0.002	<10	<10	<12	<1.0	<1.0	<1.0	<1.0
Dibenzo(a,h)anthracene	0.002	<10	<10	<12	<1.0	<1.0	<1.0	<0.30
Dibenzofuran		<10	<10	<12	NA	NA	NA	NA
Diethylphthalate	50	0.40 J	<10	<12	NA	NA	NA	NA
Dimethylphthalate	50	<10	<10	<12	NA	NA	NA	NA
Di-n-Butylphthalate	50	0.40 JB	<10	<12	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate Fluoranthene	50 50	<10 <10	<10 <10	<12 <12	NA <1.0	NA <1.0	NA <1.0	NA <1.0
Fluorantnene	50 50	<10 <10	<10 <10	<12 <12	<0.80	<0.80	<0.80	<0.80
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<12	<1.0	<1.0	<1.0	<0.30
Isophorone	50	<10	<10	<12	NA NA	NA NA	NA	NA
Naphthalene	10	<10	0.50 J	<12	<0.70	<0.70	<0.70	<0.50
Phenanthrene	50	<10	<10	<12	<0.70	<0.70	<0.70	<0.80
Phenol	1	<10	<10	<12	NA	NA	NA	NA
Pyrene	50	<10	<10 0.50 J	<12	<1.0	<1.0	<1.0	<1.0 <1.0
Total PAHs		<10		<12	<2.0	<2.0	<2.0	

Location ID: Date Collected: Values		NYSDEC TOGS 1.1.1							
	Location ID:					MW-6S			
44-DDD	Date Collected:	Values	05/21/98	10/30/00	04/08/03	02/07/06	05/11/06	08/17/06	11/16/06
44-DDE	Detected Pesticides								
44-DDT									
Address									
Alpha SHC									
Beta BHC									
Delte SHC	Alpha-Chlordane	0.05	NA	< 0.050	< 0.054	NA	NA	NA	NA
Deletrin									
Endosulfan									
Endosuellan Sultates									
Endosulfala Sulfate									
Endrin O									
Samma-Shrid Clindane 0.05	Endrin	0					NA		
Gamma-Chlordane 0.05	Endrin Aldehyde	5	NA	<0.10	<0.11	NA	NA	NA	NA
Hoptachfor 0.04									
Hoptachior Epoxide									
Methoxychior S5									
Detected Inorganics									
Aluminum		35	INA	₹0.50	₹0.54	INA	INA	INA	INA
Antimory			5.020	5.670	1 250 B	NA	NA	NA	NA
Assenic 25 5,70 B < 5,00 < 200 NA		3							
Barulm									
Cadmium									
Calcium			<1.00						
Detected Inorganics									
Detected Inorganics									
Cobalt		50	7.50 B	11.2	119	NA	NA	NA	NA
Copper 200 29.9 29.7 14.2 B NA NA NA NA Cyanide 200 <10.0		ı	2 00 B	4.00	-50.0	NIA	I NIA	I NA	NΙΔ
Cyanide (Available) 200 <10.0 <10.0 5.00 B 11.4 10.7 2.60 B 10.0 BJ Cyanide, Available NA 22 -2 2 NA									
Cyanide, Available NA <2 <2 NA NA NA Ion 300 10,300 14,800 5,505 NA									
Iron									
Magnesium		300		14,600	5,050				
Manganese	Lead	25	33.9		<50.0	NA	NA	NA	NA
Mercury				,					
Nickel									
Potassium									
Selenium									
Silver									
Sodium									
Vanadium	Sodium		68,600	214,000	346,000	NA	NA	NA	NA
Zinc	Thallium		<3.00						
Detected Inorganics-Filtered Iron									
Iron			50.8	75.0	<250	NA	NA	NA	NA
Manganese 300									
Detected Miscellaneous Alkalinity, CaCO3 256,000 NA									
Alkalinity, CaCO3 256,000 NA NA<		300	INA	115	<75.0	INA	INA	INA	INA
Available Cyanide			256 000	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
BOD 3,000 2,800 420 JB NA NA NA NA Carbon Dioxide by Headspace NA 45,510 7,700 NA			_						
Carbon monoxide NA <400 <400 NA NA NA NA Carbonate, CaCO3 <2,000									
Carbonate, CaCO3 <2,000 NA NA </td <td>Carbon Dioxide by Headspace</td> <td></td> <td>NA</td> <td>45,510</td> <td>7,700</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Carbon Dioxide by Headspace		NA	45,510	7,700	NA	NA	NA	NA
COD <10,000 43,900 24,700 NA NA NA NA Chloride 250,000 80,400 404,000 700,000 NA NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Chloride 250,000 80,400 404,000 700,000 NA NA NA NA DOC Average Quads NA 10,400 1,200 NA									
DOC Average Quads NA 10,400 1,200 NA NA NA NA Hardness, Ca/CO3 250,000 NA									
Hardness, Ca/CO3 250,000 NA NA<	2001	250,000	A1.A	40.400	1.000	NIA.			
Iron, Ferric NA									
Iron, Ferrous NA									
Methane NA <70 11 NA NA NA NA Nitrate + Nitrite (as N) NA NA NA 16,000 NA									
Nitrate Nitrogen 10,000 505 1,920 3,200 NA NA NA NA Nitrite Nitrogen 1,000 115 <100	Methane		NA	<70	11	NA	NA	NA	NA
Nitrite Nitrogen 1,000 115 <100 <100 NA NA NA NA Oil and Grease <1,000									
Oil and Grease <1,000 NA NA NA NA NA NA Orthophosphate NA									
Orthophosphate NA									
Oxygen NA 6,050 7,300 NA NA NA NA pH 8.39 NA									
pH 8.39 NA									
Sulfate 250,000 33,500 137,000 49,000 112,000 NA NA NA Sulfide 50 >1,000 <1,000									
Sulfide 50 >1,000 <1,000 <1,000 NA NA NA NA TOC Average Quads NA 10,700 1,300 NA NA NA NA									
TOC Average Quads NA 10,700 1,300 NA NA NA NA NA			,						
	TOC Average Quads								
	Total Dissolved Solids	1,000,000	461,000	NA		NA	NA	NA	NA

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance					MW-6D			
Date Collected:	Values	03/31/98	05/21/98	10/30/00	04/08/03	02/08/06	05/15/06	08/16/06	11/17/06
Detected Volatile Organics									
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
1,1,2-Trichloroethane	1	<10	<10	<10	<5.0 J	NA	NA	NA	NA
1,1-Dichloroethane	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
2-Butanone		<10	<10	5.0 J	<10 J	NA	NA	NA	NA
2-Hexanone	50	<10	<10	<10	<10 J	NA	NA NA	NA	NA
4-Methyl-2-pentanone Acetone	 50	<10 21	<10 33	<10 26	<10 J 21	NA NA	NA NA	NA NA	NA NA
	1	12	12	11	5.0	1.3 J	5.1 [5.1]	5.3	4.9 J [4.6 J]
Benzene Bromodichloromethane	50	<10	<10	<10	<5.0 J	NA	NA	NA	NA
Bromoform	50	<10	<10	<10	<5.0 J	NA NA	NA NA	NA NA	NA NA
Bromomethane	5	<10	<10	<10	<5.0 J	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide		<10	<10	<10	<5.0 J	NA.	NA NA	NA.	NA NA
Chlorobenzene	5	<10	<10	<10	<5.0 J	NA.	NA NA	NA NA	NA NA
Chloroform	7	<10	<10	<10	<5.0 J	NA NA	NA	NA	NA
Chloromethane		<10	<10	<10	<5.0 J	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	<10	<10	<10	<5.0 J	NA.	NA NA	NA NA	NA NA
Ethylbenzene	5	26	28	38	8.0 J	4.6 J	20 [19]	17	17 [17]
Methylene Chloride	5	<10	<10	3.0 J	<0.50 J	NA	NA NA	NA	NA
Styrene	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
Tetrachloroethene	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
Toluene	5	15	16	23	6.0	1.1 J	12 [12]	11	11 [11]
Trichloroethene	5	<10	<10	<10	<5.0 J	NA	NA	NA	NA
Vinyl Chloride	2	<10	<10	<10	<5.0 J	NA	NA	NA	NA
Xylenes (total)	5	59	66	180	34 J	60	90 [91]	75	81 [78]
Total BTEX		110	120	250	53 J	67 J	130 [130]	110	110 J [110 J]
Total VOCs	-	130	160	290 J	74 J	67 J	130 [130]	110	110 J [110 J]
Detected Semivolatile Organ	ics								
2,4-Dimethylphenol	50	<10	1.0 J	<50	<20	NA	NA	NA	NA
2,4-Dinitrophenol	10	<25	<25	<120	<100	NA	NA	NA	NA
2-Chloronaphthalene	10	<10	<10	<50	<20	NA	NA	NA	NA
2-Methylnaphthalene		41 J	53	68	44	110 J	57 [65 J]	67	76 J [83 J]
2-Methylphenol		<10	<10	<50	<20	NA	NA	NA	NA
2-Nitrophenol		<10	<10	<50	<20	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	<10	<10	<50	<40	NA	NA	NA	NA
4-Methylphenol		<10	4.0 J	4.0 J	2.0 J	NA	NA	NA	NA
4-Nitroaniline	5	<25	<25	<120	<40	NA	NA	NA	NA
Acenaphthene	20	3.0 J	4.0 J	5.0 J	3.0 J	<43	4.0 J [<8.0]	5.0 J	<8.0 [<8.0]
Acenaphthylene		19 J	21 J	29 J	17 J	56 J	23 J [22 J]	27 J	27 J [31 J]
Anthracene	50	<10	<10	<50	<20	<53	<5.0 [<10]	<5.0	<10 [<10]
Benzo(a)anthracene	0.002	<10	<10	<50	<20	<64	<6.0 [<12]	<6.0	<8.0 [<8.0]
Benzo(a)pyrene	0.002	<10 <10	<10 <10	<50 <50	<20 <20	<58 <83	<5.0 [<11] <8.0 [<15]	<5.0 <8.0	<5.0 [<5.0]
Benzo(b)fluoranthene									<10 [<10]
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<10 <10	<10 <10	<50 <50	<20 <20	<56 <49	<5.0 [<10] <5.0 [<9.0]	<5.0 <5.0	<3.0 J [<3.0 J] <9.0 [<9.0]
bis(2-Ethylhexyl)phthalate	5	24 J	2.0 JB	<50	<20	NA	<5.0 [<9.0] NA	NA	<9.0 [<9.0] NA
Butylbenzylphthalate	50	<10	<10	<50 <50	<20	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organ		\10	<u> </u>	\ 30	\20	INA	INA	INA	INA
Carbazole		9.0 J	9.0 J	13 J	10 J	NA	NA	NA	NA
Chrysene	0.002	<10	<10	<50	<20	<52	<5.0 [<10]	<5.0	<12 [<12]
Dibenzo(a,h)anthracene	0.002	<10	<10	<50 <50	<20	<72	<7.0 [<13]	<7.0	<2.0 J [<2.0 J]
Dibenzofuran		8.0 J	10 J	13 J	8.0 J	NA	NA	NA	NA
Diethylphthalate	50	<10	<10	<50	<20	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<10	<10	<50	<20	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	<10	<10	<50	<20	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate	50	<10	<10	<50	<20	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<10	<10	<50	<20	<58	<5.0 [<11]	<5.0	<9.0 [<9.0]
Fluorene	50	7.0 J	10 J	12 J	7.0 J	<41	9.0 J [8.0 J]	10 JM	11 J [12 J]
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<50	<20	<63	<6.0 [<12]	<6.0	<3.0 J [<3.0 J]
Isophorone	50	<10	<10	<50	<20	NA	NA	NA	NA
Naphthalene	10	190	200	350	150	1,200	310 [370]	390	360 [410]
Phenanthrene	50	<10	0.70 J	0.90 J	<20	<35	<3.0 [<7.0]	<3.0	<7.0 [<7.0]
Phenol	1	50	52	70	12 J	NA	NA	NA	NA
Pyrene	50	<10	<10	<50	<20	<54	<5.0 [<10]	<5.0	<10 [<10]
Total PAHs		260 J	290 J	470 J	220 J	1,400 J	400 J [470 J]	500 J	470 J [540 J]
Total SVOCs		350 J	370 J	570 J	250 J	1,400 J	400 J [470 J]	500 J	470 J [540 J]

			JIKAO	USE, NEW 1C	, KK					
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance									
Date Collected:	Values	03/31/98	05/21/98	10/30/00	04/08/03	02/08/06	05/15/06	08/16/06	11/17/06	
Detected Pesticides			•	•	•	•	•		•	
4,4'-DDD	0.3	NA	NA	<0.11	<0.16	NA	NA	NA	NA	
4,4'-DDE	0.2	NA	NA	<0.11	<0.11	NA	NA	NA	NA	
4,4'-DDT	0.2	NA NA	NA	<0.11	<0.11	NA	NA NA	NA	NA NA	
Aldrin Alpha-BHC	0 0.01	NA NA	NA NA	<0.053 <0.053	<0.054 <0.054	NA NA	NA NA	NA NA	NA NA	
Alpha-Chlordane	0.01	NA NA	NA NA	<0.053	<0.054	NA NA	NA NA	NA NA	NA NA	
Beta-BHC	0.03	NA NA	NA NA	<0.053	<0.054	NA NA	NA NA	NA	NA NA	
Delta-BHC		NA	NA	0.020 J	<0.054	NA	NA NA	NA.	NA NA	
Dieldrin	0.004	NA	NA	<0.11	<0.11	NA	NA	NA	NA	
Endosulfan I		NA	NA	< 0.053	< 0.054	NA	NA	NA	NA	
Endosulfan II		NA	NA	<0.11	<0.11	NA	NA	NA	NA	
Endosulfan Sulfate		NA	NA	<0.11	<0.11	NA	NA	NA	NA	
Endrin	0	NA	NA	0.12	<0.11	NA	NA NA	NA	NA NA	
Endrin Aldehyde	5	NA	NA NA	<0.11	<0.11	NA NA	NA NA	NA	NA NA	
Gamma-BHC (Lindane) Gamma-Chlordane	0.05 0.05	NA NA	NA NA	<0.053 <0.053	<0.054 <0.054	NA NA	NA NA	NA NA	NA NA	
Heptachlor	0.04	NA NA	NA NA	<0.053	0.015 J	NA NA	NA NA	NA NA	NA NA	
Heptachlor Epoxide	0.03	NA NA	NA NA	<0.053	<0.054	NA NA	NA NA	NA NA	NA NA	
Methoxychlor	35	NA NA	NA NA	<0.53	<0.54	NA NA	NA NA	NA NA	NA NA	
Detected Inorganics							ı			
Aluminum		1,140	852	180	<2,500	NA	NA	NA	NA	
Antimony	3	<4.00	<4.00	<5.00	<100	NA	NA	NA	NA	
Arsenic	25	<2.00	<2.00	<2.50	<200	NA	NA	NA	NA	
Barium	1,000	44.7 BEN	43.9 B	42.0	54.4	NA	NA	NA	NA	
Beryllium		<1.00	<1.00	<5.00	<25.0	NA	NA	NA	NA	
Cadmium	5	<1.00	<1.00	<5.00	<50.0	NA	NA	NA	NA	
Calcium		369,000 E	248,000	279,000	312,000	NA	NA NA	NA	NA NA	
Chromium	50	2.30 BN	<1.00	<1.00	<50.0	NA	NA	NA	NA	
Detected Inorganics		4.00	4.00	4.00	50.0	NA	NA	NA	NA	
Cobalt	200	<1.00 <1.00	<1.00 2.20 B	<1.00 1.60	<50.0 <50.0	NA NA	NA NA	NA NA	NA NA	
Copper Cyanide	200	<10.0	49.0	<10.0	18.1	203	9.90 B [3.00 B]	<1.30	25.1 J [55.2 J]	
Cyanide, Available		NA NA	NA	<2	11	<2	NA	NA NA	NA	
Iron	300	1,950 EN	1,660	222	<1,000	NA	NA	NA	NA	
Lead	25	3.50 N	<1.00	<2.00	<50.0	NA	NA	NA	NA	
Magnesium		941 BE	1,010 B	102	<500	NA	NA	NA	NA	
Manganese	300	35.1 EN	35.3	3.50	<75.0	NA	NA	NA	NA	
Mercury	0.7	0.490	0.410 N	<0.100	<0.200	NA	NA	NA	NA	
Nickel	100	5.40 BN	3.80 B	2.50	<50.0	NA	NA	NA	NA	
Potassium	 10	11,800	12,600	15,200	19,600 J	NA	NA NA	NA	NA NA	
Selenium Silver	50	2.80 BN <1.00	3.70 B <1.00	<5.00 <1.00	<150 <30.0	NA NA	NA NA	NA NA	NA NA	
Sodium		106,000 E	83,200	93,400	428,000	NA NA	NA NA	NA	NA NA	
Thallium		<3.00	<3.00	<6.00	<200	NA	NA NA	NA	NA NA	
Vanadium		3.30 BN	2.20 B	1.90	<30.0	NA	NA	NA	NA	
Zinc	2,000	97.1	11.9 B	<5.00	<250	NA	NA	NA	NA	
Detected Inorganics-Filtered										
Iron	300	NA	NA	93.7	<1,000	NA	NA	NA	NA	
Manganese	300	NA	NA	<1.00	<75.0	NA	NA	NA	NA	
Detected Miscellaneous										
Alkalinity, CaCO3		37,000	680,000	NA	NA	NA	NA	NA	NA	
Available Cyanide		NA 26.100	NA 2.100	NA 27.600	NA 18.000 I	NA NA	NA NA	NA NA	NA NA	
BOD Carbon Dioxide by Headspace		26,100	2,100	27,600	18,000 J	NA NA	NA NA	NA NA	NA NA	
Carbon Dioxide by Headspace Carbon monoxide		NA NA	NA NA	<600 400	<600 <400	NA NA	NA NA	NA NA	NA NA	
Carbonate, CaCO3		<2,000	91,200	NA	NA	NA NA	NA NA	NA	NA NA	
COD		<10,000	43,200	78,100	68,300	NA NA	NA NA	NA	NA NA	
Chloride	250,000	241,000	353,000	121,000	910,000	NA	NA NA	NA	NA NA	
DOC Average Quads	,	NA	NA	23,800	19,000	NA	NA	NA	NA	
Hardness, Ca/CO3				NA	NA	NA	NA	NA	NA	
Iron, Ferric		925,000	623,000							
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA	
		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	
Methane		NA NA NA	NA NA NA	NA NA 530	NA NA 1,600	NA NA NA	NA NA NA	NA NA NA	NA NA	
Methane Nitrate + Nitrite (as N)		NA NA NA NA	NA NA NA	NA NA 530 NA	NA NA 1,600 NA	NA NA NA 373	NA NA NA NA	NA NA NA NA	NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen	 10,000	NA NA NA NA <100	NA NA NA NA 306	NA NA 530 NA <100	NA NA 1,600 NA <100	NA NA NA 373 NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen	 10,000 1,000	NA NA NA NA <100 222	NA NA NA NA 306 231	NA NA 530 NA <100 319	NA NA 1,600 NA <100 <100	NA NA NA 373 NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease	 10,000 1,000	NA NA NA NA <100 222 <1,000	NA NA NA NA 306 231 3,500	NA NA 530 NA <100 319 NA	NA NA 1,600 NA <100 <100 NA	NA NA NA 373 NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease Orthophosphate	 10,000 1,000	NA NA NA NA <100 222 <1,000 NA	NA NA NA NA 306 231 3,500 NA	NA NA 530 NA <100 319 NA NA	NA NA 1,600 NA <100 <100 NA NA	NA NA NA 373 NA NA NA	NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease	10,000 1,000	NA NA NA NA <100 222 <1,000 NA NA	NA NA NA NA 306 231 3,500	NA NA 530 NA <100 319 NA	NA NA 1,600 NA <100 <100 NA	NA NA NA 373 NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease Orthophosphate Oxygen	 10,000 1,000	NA NA NA NA <100 222 <1,000 NA	NA NA NA NA 306 231 3,500 NA NA	NA NA 530 NA <100 319 NA NA NA 870 NA 106,000	NA NA 1,600 NA <100 <100 NA NA NA 740	NA NA NA 373 NA NA NA NA	NA	NA	NA NA NA NA NA NA NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease Orthophosphate Oxygen pH	10,000 1,000 	NA NA NA NA <100 222 <1,000 NA NA 12.2	NA NA NA NA 306 231 3,500 NA NA 12.17	NA NA 530 NA <100 319 NA NA 870 NA	NA NA 1,600 NA <100 <100 NA NA 740 NA	NA NA NA 373 NA	NA N	NA N	NA	
Methane Nitrate + Nitrite (as N) Nitrate Nitrogen Nitrite Nitrogen Oil and Grease Orthophosphate Oxygen pH Sulfate	10,000 1,000 250,000	NA NA NA NA <100 222 <1,000 NA NA 12.2 128,000	NA NA NA NA 306 231 3,500 NA NA 12.17	NA NA 530 NA <100 319 NA NA NA 870 NA 106,000	NA NA 1,600 NA <100 <100 NA NA 740 NA 160,000	NA NA NA 373 NA NA NA NA NA NA	NA N	NA N	NA N	

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance				MW-7	78			
Date Collected:	Values	03/31/98	05/21/98	10/31/00	04/23/03	02/06/06	05/12/06	08/15/06	11/13/06
Detected Volatile Organics	ruiuoo								
1,1,1-Trichloroethane	5	<10	<10	<10	<5.0	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	1.0 J	<10	<10	<5.0	NA	NA	NA	NA
1,1,2-Trichloroethane	1	1.0 J	<10	<10	<5.0	NA	NA	NA	NA
1,1-Dichloroethane	5	<10	<10	<10	<5.0	NA	NA	NA	NA
2-Butanone		<10	<10	<10	<10	NA	NA	NA	NA
2-Hexanone	50	<10	<10	<10	<10	NA	NA	NA	NA
4-Methyl-2-pentanone		<10	<10	<10	<10	NA	NA	NA	NA
Acetone	50	<10	<10	<10	<10	NA 0.50 I	NA 0.40	NA 0.40	NA 0.40
Benzene	1 50	<10	<10	<10	<5.0	0.50 J	<0.40 NA	<0.40 NA	<0.40
Bromodichloromethane Bromoform	50	1.0 J <10	<10 <10	<10 <10	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA
Bromomethane	5	<10	<10	<10	<5.0	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide		<10	<10	<10	<5.0	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	5	<10	<10	<10	<5.0	NA NA	NA NA	NA NA	NA
Chloroform	7	<10	<10	<10	0.70 J	NA NA	NA	NA	NA
Chloromethane		<10	<10	<10	<5.0	NA	NA	NA	NA
Dibromochloromethane	50	<10	<10	<10	<5.0	NA	NA	NA	NA
Ethylbenzene	5	<10	<10	<10	<5.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	5	0.40 J	1.0 J	0.20 J	0.40 J	NA	NA	NA	NA
Styrene	5	2.0 J	<10	<10	<5.0	NA	NA	NA	NA
Tetrachloroethene	5	0.20 J	<10	<10	<5.0	NA	NA	NA	NA
Toluene	5	<10	<10	2.0 J	<5.0	< 0.30	< 0.30	<0.30	< 0.30
Trichloroethene	5	1.0 J	<10	<10	<5.0	NA	NA	NA	NA
Vinyl Chloride	2	<10	<10	<10	<5.0	NA	NA	NA	NA
Xylenes (total)	5	0.30 J	2.0 J	<10	<5.0	1.2 J	<1.0	<1.0	<1.0
Total BTEX		0.30 J	2.0 J	2.0 J	<5.0	1.7 J	<1.0	<1.0	<1.0
Total VOCs		6.9 J	3.0 J	2.2 J	1.1 J	1.7 J	<1.0	<1.0	<1.0
Detected Semivolatile Organ		4.0.1		10	10				
2,4-Dimethylphenol	50	1.0 J	2.0 J	<10	<10	NA	NA	NA	NA
2,4-Dinitrophenol	10 10	<25	<25 <10	<25	<50 <10	NA NA	NA NA	NA NA	NA NA
2-Chloronaphthalene 2-Methylnaphthalene	10	<10 <10	0.30 J	<10 <10	<10	<0.60	<0.60	<0.60	<0.70
2-Methylphenol		<10	0.70 J	<10	<10	NA	NA	NA	NA
2-Nitrophenol		<10	<10	<10	<10	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	<10	<10	<10	<20	NA NA	NA	NA	NA
4-Methylphenol		0.70 J	0.60 J	<10	<10	NA	NA	NA	NA
4-Nitroaniline	5	<25	<25	<25	<20	NA	NA	NA	NA
Acenaphthene	20	<10	<10	0.20 J	<10	<0.80	<0.80	<0.80	< 0.90
Acenaphthylene		0.50 J	0.30 J	0.60 J	0.70 J	<0.80	<0.80	<0.80	1.0 J
Anthracene	50	<10	<10	0.10 J	<10	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<1.0	<1.0	<1.0	<0.80
Benzo(a)pyrene	0	<10	<10	<10	<10	<1.0	<1.0	<1.0	< 0.50
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<2.0	<2.0	<2.0	<1.0
Benzo(g,h,i)perylene		<10	<10	<10	<10	<1.0	<1.0	<1.0	<0.30
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<0.90	<0.90	<0.90	<1.0
bis(2-Ethylhexyl)phthalate	5	0.70 J	1.0 JB	2.0 J	1.0 J	NA	NA	NA	NA NA
Butylbenzylphthalate	50	<10	<10	<10	<10	NA	NA	NA	NA
Detected Semivolatile Organ									
Carbazole		<10	<10	<10	<10	NA 1.0	NA 1.0	NA 1.0	NA 1.0
Chrysene Dibenza(a b)anthrasena	0.002	<10	<10	<10	<10	<1.0	<1.0	<1.0	<1.0
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<1.0	<1.0 NA	<1.0	<0.30 J
Dibenzofuran Diethylphthalate	50	<10 <10	<10 1.0 J	0.20 J 0.30 J	<10 <10	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<10	<10	<10	<10	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	<10	0.70 JB	0.10 J	<10	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate Di-n-Octylphthalate	50	<10	<10	<10	<10	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<10	<10	<10	<10	<1.0	<1.0	<1.0	<1.0
Fluorene	50	<10	<10	<10	<10	<0.80	<0.80	<0.80	<0.80
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<1.0	<1.0	<1.0	<0.30
Isophorone	50	<10	<10	<10	<10	NA	NA	NA	NA
Naphthalene	10	0.30 J	3.0 J	2.0 J	2.0 J	<0.70	<0.70	0.70 J	3.0 J
Phenanthrene	50	<10	<10	<10	<10	<0.70	<0.70	<0.70	<0.80
Phenol	1	<10	<10	0.40 J	<10	NA	NA	NA	NA
Pyrene	50	<10	<10	<10	<10	<1.0	<1.0	<1.0	<1.0
Total PAHs		0.80 J	3.6 J	2.9 J	2.7 J	<2.0	<2.0	0.70 J	4.0 J
Total SVOCs		3.2 J	9.6 J	5.9 J	3.7 J	<2.0	<2.0	0.70 J	4.0 J

			SYRACUSE	, NEW YORK					
	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance				MW-7				
Date Collected:	Values	03/31/98	05/21/98	10/31/00	04/23/03	02/06/06	05/12/06	08/15/06	11/13/06
Detected Pesticides									
4,4'-DDD 4.4'-DDE	0.3 0.2	NA NA	NA NA	<0.11 <0.11	<0.17 <0.11	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	NA NA	NA NA	0.22	<0.11	NA NA	NA NA	NA NA	NA NA
Aldrin	0	NA	NA	<0.057	<0.056	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	<0.057	<0.056	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	<0.057	<0.056	NA	NA	NA	NA
Beta-BHC Delta-BHC		NA NA	NA NA	0.014 J 0.023 J	<0.056 <0.056	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	NA NA	NA NA	<0.11	<0.036	NA NA	NA NA	NA NA	NA NA
Endosulfan I		NA	NA	<0.057	<0.056	NA	NA	NA	NA
Endosulfan II		NA	NA	<0.11	<0.11	NA	NA	NA	NA
Endosulfan Sulfate		NA	NA	<0.11	<0.11	NA	NA	NA	NA
Endrin Endrin Aldehyde	0 5	NA NA	NA NA	0.026 J <0.11	<0.11 <0.11	NA NA	NA NA	NA NA	NA NA
Gamma-BHC (Lindane)	0.05	NA NA	NA NA	<0.11	0.029 J	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA	NA	<0.057	<0.056	NA.	NA NA	NA NA	NA NA
Heptachlor	0.04	NA	NA	< 0.057	< 0.056	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA	NA	<0.057	<0.056	NA	NA	NA	NA
Methoxychlor	35	NA	NA	<0.57	<0.56	NA	NA	NA	NA
Detected Inorganics	1	4.070	4.000.5	000	500 D	N/A	N1 A	h 1 A	NI A
Aluminum	3	1,670 4.30 B	1,900 B <80.0	636 <5.00	588 B <100	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	4.30 B <2.00	<80.0 <40.0	<5.00 <2.50	<100 <200	NA NA	NA NA	NA NA	NA NA
Barium	1,000	15.9 BEN	<20.0	15.1	16.0 BEJ	NA NA	NA NA	NA NA	NA NA
Beryllium		<1.00	<20.0	<0.500	<25.0	NA	NA	NA	NA
Cadmium	5	1.10 BN	<20.0	<0.500	<50.0	NA	NA	NA	NA
Calcium		111,000 E	177,000	237,000	82,200 EJ	NA	NA	NA	NA
Chromium	50	3.40 BN	<20.0	1.10	<50.0	NA	NA	NA	NA
Detected Inorganics		1.00 PM	-20.0	1.40	-50.0	NIA	N N A	I NIA	NΙΔ
Cobalt Copper	200	1.00 BN 4.80 B	<20.0 <20.0	1.40 7.90	<50.0 14.9 B	NA NA	NA NA	NA NA	NA NA
Cyanide	200	380	292	440	317	291	235	98.3	349 J
Cyanide, Available		NA	NA	<2	16	<2	NA NA	NA	NA NA
Iron	300	1,710 EN	3,100	1,120	348 B	NA	NA	NA	NA
Lead	25	3.40	39.7 B	<2.00	<50.0	NA	NA	NA	NA
Magnesium		125,000 E	132,000	80,500	147,000 EJ	NA	NA	NA	NA
Manganese	300 0.7	102 EN <0.200	229 B 0.200 N	190 <0.100	61.4 B <0.200 J	NA NA	NA NA	NA NA	NA NA
Mercury Nickel	100	7.70 BN	<40.0	7.60	<50.200 3	NA NA	NA NA	NA NA	NA NA
Potassium		2,110 B	2,420 B	4,190	2,010	NA NA	NA	NA	NA NA
Selenium	10	2.70 BN	<40.0	<5.00	<150	NA	NA	NA	NA
Silver	50	<1.00	<20.0	<1.00	<30.0	NA	NA	NA	NA
Sodium		92,600 E	155,000	141,000	78,800	NA	NA	NA	NA
Thallium Vanadium		<3.00 11.6 BN	<60.0 <20.0	<6.00 6.10	<200 <30.0	NA NA	NA NA	NA NA	NA NA
Zinc	2,000	12.9 B	59.8 B	50.5	<250	NA NA	NA NA	NA NA	NA NA
Detected Inorganics-Filtered		12.02	00.02	00.0	4200				
Iron	300	NA	NA	228	<2,000	NA	NA	NA	NA
Manganese	300	NA	NA	77.8	<150	NA	NA	NA	NA
Detected Miscellaneous									
Alkalinity, CaCO3		357,000	267,000	NA	NA	NA	NA	NA	NA
Available Cyanide BOD		NA 2,100	NA 4,800	NA 3,100	NA 1,800 B	NA NA	NA NA	NA NA	NA NA
Carbon Dioxide by Headspace		2,100 NA	4,800 NA	29,250	1,800 B 28,000	NA NA	NA NA	NA NA	NA NA
Carbon monoxide		NA NA	NA NA	<400	<400	NA NA	NA NA	NA NA	NA NA
Carbonate, CaCO3		4,200	<2,000	NA	NA	NA	NA	NA	NA
COD		90,200	18,200	41,500	49,200	NA	NA	NA	NA
Chloride	250,000	147,000	136,000	113,000	100,000	NA	NA	NA	NA
DOC Average Quads		NA 792.000	NA 988,000	12,900 NA	7,400 NA	NA NA	NA NA	NA NA	NA NA
Hardness, Ca/CO3 Iron, Ferric		792,000 NA	988,000 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
Methane		NA	NA	<70	11	NA	NA	NA	NA
Nitrate + Nitrite (as N)		NA	NA	NA	NA	1,140	NA	NA	NA
Nitrate Nitrogen	10,000	460	<100	439	280	NA	NA	NA	NA
Nitrite Nitrogen Oil and Grease	1,000	14	16	<100	<500	NA NA	NA NA	NA NA	NA NA
Oil and Grease Orthophosphate		1,100 NA	<1,000 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxygen		NA NA	NA NA	4,800	2,300	NA NA	NA NA	NA NA	NA NA
pH		7.78	7.81	NA NA	NA	NA	NA	NA	NA
Sulfate	250,000	474,000	584,000	1,070,000	380,000	546,000	NA	NA	NA
Sulfide	50	<1,000	<1,000	<1,000	<1,000	NA	NA	NA	NA
TOC Average Quads	4.000.000	NA 440,000	NA	14,900	7,500	NA	NA NA	NA	NA NA
Total Dissolved Solids	1,000,000	1,140,000	1,340,000	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1									
Location ID:	Water Guidance					W-7D				
Date Collected: Detected Volatile Organics	Values	03/31/98	05/21/98	10/27/00	04/23/03	02/07/06	05/15/06	08/17/06	11/16/06	
1,1,1-Trichloroethane	5	<10	<10	<200	<100	NA	NA	NA	NA	
1,1,2,2-Tetrachloroethane	5	<10	<10	<200	<100	NA NA	NA NA	NA NA	NA NA	
1,1,2-Trichloroethane	1	<10	<10	<200	<100	NA	NA	NA	NA	
1,1-Dichloroethane	5	<10	<10	<200	<100	NA	NA	NA	NA	
2-Butanone		<10	<10	<200	<200	NA	NA	NA	NA	
2-Hexanone	50	<10	<10	<200	<200	NA	NA	NA NA	NA	
4-Methyl-2-pentanone Acetone	50	<10 110 J	<10 <10	<200 610	<200 <200	NA NA	NA NA	NA NA	NA NA	
Benzene	1	44 J	40 J	55	22 J	3.3 J	2.5 J	2.6 J [2.4 J]	2.6 J	
Bromodichloromethane	50	<10	<10	<200	<100	NA	NA	NA NA	NA	
Bromoform	50	<10	<10	<200	<100	NA	NA	NA	NA	
Bromomethane	5	<10	<10	<200	<100	NA	NA	NA	NA	
Carbon Disulfide		<10	<10	<200	<100	NA	NA NA	NA NA	NA	
Chlorobenzene Chloroform	5 7	290 <10	<10 <10	<200 <200	<100 <100	NA NA	NA NA	NA NA	NA NA	
Chloromethane		<10	<10	<200	<100	NA NA	NA NA	NA NA	NA	
Dibromochloromethane	50	<10	<10	<200	<100	NA NA	NA NA	NA NA	NA	
Ethylbenzene	5	320	270	360	210	33	27	28 [27]	24	
Methylene Chloride	5	14 J	<10	600	23 J	NA	NA	NA NA	NA	
Styrene	5	<10	<10	<200	140	NA	NA	NA NA	NA	
Tetrachloroethene	5	<10	<10	<200	<100	NA	NA 5.0.1	NA NA	NA	
Toluene Trichloroethene	5 5	870 <10	720 <10	860 5.0	220 <100	7.1 NA	5.2 J NA	4.7 J [4.8 J] NA	4.1 J NA	
Vinyl Chloride	2	<10	<10	<200	<100	NA NA	NA NA	NA NA	NA NA	
Xylenes (total)	5	5,400	4.400	6.000	2.900	320	300	280 [300]	270	
Total BTEX		6,600 J	5,400 J	7,300	3,400 J	360 J	340 J	320 J [330 J]	300 J	
Total VOCs		7,100 J	5,400 J	8,500	3,500 J	360 J	340 J	320 J [330 J]	300 J	
Detected Semivolatile Organ	nics									
2,4-Dimethylphenol	50	<10	<10	<2,000	<1,000	NA	NA	NA	NA	
2,4-Dinitrophenol	10	<25	<25	<5,000	<5,000	NA	NA	NA NA	NA	
2-Chloronaphthalene 2-Methylnaphthalene	10	<10 1,500 J	<10 1,100 J	<2,000 980 J	<1,000 1,100	NA 370 J	NA 380 J	NA 220 J [270 J]	NA 430 J	
2-Methylphenol		<10	<10	<2,000	<1,000	NA	NA	NA	430 J	
2-Nitrophenol		<10	<10	<2,000	<1,000	NA	NA	NA NA	NA	
3,3'-Dichlorobenzidine	5	<10	<10	<2,000	<2,000	NA	NA	NA	NA	
4-Methylphenol		<10	<10	<2,000	<1,000	NA	NA	NA	NA	
4-Nitroaniline	5	<25	<25	<5,000	<2,000	NA 10	NA	NA 40 f. 401	NA 07.1	
Acenaphthene Acenaphthylene	20	<10 540 J	31 J 410 J	<2,000 360 J	39 J 390 J	<40 92 J	<80 <75	<40 [<42] 44 J [52 J]	<87 J 99 J	
Anthracene	50	82 J	37 J	27 J	83 J	<50	<99	<50 [<52]	<110 J	
Benzo(a)anthracene	0.002	<10	<10	<2,000	<1,000	<60	<120	<60 [<63]	<84 J	
Benzo(a)pyrene	0	<10	<10	<2,000	<1,000	<54	<110	<54 [<57]	<54 J	
Benzo(b)fluoranthene	0.002	<10	<10	<2,000	<1,000	<77	<150	<77 [<81]	<100 J	
Benzo(g,h,i)perylene		<10	<10	<2,000	<1,000	<52	<100	<52 [<55]	<35 J	
Benzo(k)fluoranthene	0.002	<10 <10	<10 <10	<2,000 <2.000	31 J	<46 NA	<91 NA	<46 [<48]	<100 J NA	
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	5 50	<10 <10	<10 <10	<2,000	<1,000 <1.000	NA NA	NA NA	NA NA	NA NA	
Detected Semivolatile Organ		<10	<10	\2,000	<1,000	IVA	INA	INA	INA	
Carbazole		270 J	220 J	190 J	150 J	NA	NA	NA	NA	
Chrysene	0.002	<10	<10	<2,000	<1,000	<48	<97	<48 [<51]	<130 J	
Dibenzo(a,h)anthracene		<10	<10	<2,000	<1,000	<67	<130	<67 [<71]	<26 J	
Dibenzofuran		230 J	140 J	130 J	180 J	NA	NA	NA	NA	
Diethylphthalate	50	<10	<10	<2,000	<1,000	NA	NA	NA NA	NA	
Dimethylphthalate	50	<10	<10	<2,000	<1,000	NA NA	NA NA	NA NA	NA NA	
Di-n-Butylphthalate Di-n-Octylphthalate	50 50	<10 <10	<10 <10	<2,000 <2,000	<1,000 <1,000	NA NA	NA NA	NA NA	NA NA	
Fluoranthene	50	140 J	34 J	25 J	120 J	<54	<110	<54 [<57]	<99 J	
Fluorene	50	220 J	130 J	110 J	160 J	56 J	<77	<38 [<41]	<77 J	
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<2,000	<1,000	<58	<120	<58 [<62]	<35 J	
Isophorone	50	<10	<10	<2,000	<1,000	NA	NA	NA	NA	
Naphthalene	10	17,000	11,000	12,000	6,000	2,700	2,500	1,600 [2,000]	2,700 J	
Phenanthrene	50 1	280 J <10	120 J	100 J	270 J	42 J	<66	<33 [<35] NA	<78 J	
Phenol Pyrene	50	<10 <10	58 J 20 J	<2,000 <2.000	<1,000 88 J	NA <50	NA <100	NA <50 [<53]	NA <110 J	
	50									
Total PAHs		20,000 J	13.000 J	14.000 J	8,300 J	3,300 J	2.900 J	1,900 J [2,300 J]	3.200 J	

				SE, NEW TOP					
Leasting ID.	NYSDEC TOGS 1.1.1					W 7D			
Location ID: Date Collected:	Water Guidance Values	03/31/98	05/21/98	10/27/00	04/23/03	N-7D 02/07/06	05/15/06	08/17/06	11/16/06
Detected Pesticides					•				
4,4'-DDD	0.3	NA	NA	<0.50	<0.17	NA	NA	NA	NA
4,4'-DDE	0.2	NA	NA	<0.50	<0.11	NA	NA	NA	NA
4,4'-DDT	0.2	NA NA	NA	<0.50	<0.11	NA	NA	NA NA	NA
Aldrin Alpha-BHC	0.01	NA NA	NA NA	<0.25 0.036 J	<0.056 0.055 J	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	0.05	NA NA	NA NA	<0.25	< 0.056	NA NA	NA NA	NA NA	NA NA
Beta-BHC	0.05	NA NA	NA NA	<0.25	0.080	NA	NA NA	NA NA	NA NA
Delta-BHC		NA NA	NA NA	0.068 J	<0.056	NA NA	NA NA	NA NA	NA.
Dieldrin	0.004	NA	NA	0.16 J	<0.11	NA	NA	NA	NA
Endosulfan I		NA	NA	<0.25	< 0.056	NA	NA	NA	NA
Endosulfan II		NA	NA	0.081 J	<0.11	NA	NA	NA	NA
Endosulfan Sulfate		NA NA	NA	<0.50	<0.11	NA	NA	NA NA	NA
Endrin Aldahada	0	NA NA	NA NA	0.28 J	<0.11	NA NA	NA NA	NA NA	NA
Endrin Aldehyde Gamma-BHC (Lindane)	5 0.05	NA NA	NA NA	<0.50 <0.25	<0.11 <0.056	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA NA	NA NA	0.12 J	0.13	NA NA	NA NA	NA NA	NA NA
Heptachlor	0.03	NA NA	NA NA	<0.25	<0.056	NA NA	NA	NA NA	NA NA
Heptachlor Epoxide	0.03	NA	NA NA	<0.25	<0.056	NA	NA NA	NA NA	NA
Methoxychlor	35	NA	NA	<2.5	<0.56	NA	NA	NA	NA
Detected Inorganics									
Aluminum		213	9,300	1,840	1,130 B	NA	NA	NA	NA
Antimony	3	<4.00	<80.0	<5.00	<100	NA	NA	NA	NA
Arsenic	25	<2.00	<40.0	<2.50	<200	NA	NA	NA	NA
Barium	1,000	8.90 BEN	59.1 B	21.6	22.7 BEJ	NA	NA	NA NA	NA NA
Beryllium		<1.00 1.10 BN	<20.0 <20.0	<5.00	<25.0 <50.0	NA NA	NA NA	NA NA	NA NA
Cadmium Calcium	5 	161.000 E	241,000	<5.00 156,000	204.000 EJ	NA NA	NA NA	NA NA	NA NA
Chromium	50	<1.00	<20.0	3.10	<50.0	NA NA	NA	NA NA	NA NA
Detected Inorganics	00	11.00	120.0	0.10	100.0				
Cobalt		<1.00	<20.0	1.60	<50.0	NA	NA	NA	NA
Copper	200	<1.00	<20.0	5.50	<50.0	NA	NA	NA	NA
Cyanide	200	386	459	280	608	330	135	297 [244]	390 J
Cyanide, Available		NA	NA	<2	10	<2	NA	NA	NA
Iron	300	435 EN	3,290	3,880	1,280	NA	NA	NA	NA
Lead	25	<1.00	36.9 B	<2.00	<50.0	NA	NA	NA NA	NA
Magnesium Manganese	300	476 BE 4.00 BEN	56,200 B	2,690	1,840 EJ	NA NA	NA NA	NA NA	NA NA
Mercury	0.7	<0.200	115 B <0.200	81.8 <0.100	30.7 B <0.200 J	NA NA	NA NA	NA NA	NA NA
Nickel	100	4.40 BN	<40.0	6.00	<50.0	NA NA	NA NA	NA NA	NA NA
Potassium		5,190	6,390 B	7,780	8,250	NA.	NA.	NA NA	NA.
Selenium	10	<2.00	<40.0	<5.00	<150	NA	NA	NA	NA
Silver	50	<1.00	<20.0	<1.00	<30.0	NA	NA	NA	NA
Sodium		45,300 E	116,000	48,800	128,000	NA	NA	NA	NA
Thallium		<3.00	<60.0	<6.00	<200	NA	NA	NA	NA
Vanadium		1.30 BN	<20.0	4.30	<30.0	NA	NA	NA	NA
Zinc	2,000	3.10 B	37.0 B	37.4	<250	NA	NA	NA	NA
Detected Inorganics-Filtered				007	0.000	110		***	1 114
Iron Manganese	300 300	NA NA	NA NA	337 4.20	<2,000 <150	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	300	INA	INA	4.20	<150	INA	INA	INA	INA
Alkalinity, CaCO3		89,000	83,500	NA	NA	NA	NA	NA	NA NA
Available Cyanide		NA	03,500 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BOD		16,400	5,700	20,600	15,000	NA NA	NA	NA NA	NA NA
Carbon Dioxide by Headspace		NA	NA	NA NA	<600	NA	NA	NA NA	NA
Carbon monoxide		NA	NA	NA	<400	NA	NA	NA	NA
Carbonate, CaCO3		38,900	47,600	NA	NA	NA	NA	NA	NA
COD		64,300	39,100	73,200	101,000	NA	NA	NA	NA
Chloride	250,000	83,600	83,000	93,300	240,000	NA	NA	NA NA	NA
DOC Average Quads		NA 404.000	NA 933,000	31,700	29,000	NA	NA NA	NA NA	NA NA
Hardness, Ca/CO3 Iron, Ferric		404,000 NA	833,000 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		NA NA	NA NA	NA NA	350	NA	NA NA	NA NA	NA NA
Nitrate + Nitrite (as N)		NA NA	NA NA	NA	NA	<8	NA	NA NA	NA NA
Nitrate Nitrogen	10,000	<100	<100	<100	<100	NA	NA	NA NA	NA
Nitrite Nitrogen	1,000	19	16	<100	470 B	NA	NA	NA	NA
Oil and Grease		1,700	3,300	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	NA	NA
Oxygen		NA .	NA	NA	960	NA	NA	NA NA	NA
pH Sulfata	250,000	10.7	10.77	NA	NA	NA	NA NA	NA NA	NA NA
Sulfate Sulfide	250,000	2,630,000	246,000 2,290	264,000	290,000	319,000 NA	NA NA	NA NA	NA NA
TOC Average Quads	50	3,800 NA	2,290 NA	2,300 42,000	3,900 30,000	NA NA	NA NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	880,000	631,000	42,000 NA	30,000 NA	NA NA	NA NA	NA NA	NA NA
TOTAL DISSUIVED SUIIUS	1,000,000	000,000	031,000	INA	INA	INA	INA	INA	INA

Location ID:	NYSDEC TOGS 1.1.1 Water Guidance				MW-8	e					
Date Collected:	Values	03/30/98	05/20/98	05/21/98	04/21/03	02/07/06	05/15/06	08/17/06	11/17/06		
Detected Volatile Organics											
1,1,1-Trichloroethane	5	<10	<10	NA	<5.0	NA	NA	NA	NA		
1,1,2,2-Tetrachloroethane	5	<10	<10	NA	<5.0	NA	NA	NA	NA		
1,1,2-Trichloroethane	1	<10	<10	NA	<5.0	NA	NA	NA	NA		
1,1-Dichloroethane	5	<10	<10	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA		
2-Butanone		<10	<10	NA NA	<10	NA	NA NA	NA NA	NA		
2-Hexanone 4-Methyl-2-pentanone	50	<10 <10	<10 <10	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA		
Acetone	50	<10	37	NA NA	<10	NA NA	NA NA	NA NA	NA NA		
Benzene	1	<10	<10	NA NA	<5.0	<0.40	<0.40	<0.40	<0.40		
Bromodichloromethane	50	<10	<10	NA NA	<5.0	NA	NA	NA	NA		
Bromoform	50	<10	<10	NA	<5.0	NA	NA	NA	NA		
Bromomethane	5	<10	<10	NA	<5.0	NA	NA	NA	NA		
Carbon Disulfide		<10	<10	NA	<5.0	NA	NA	NA	NA		
Chlorobenzene	5	<10	<10	NA	<5.0	NA	NA	NA	NA		
Chloroform	7	<10	<10	NA	3.0 J	NA	NA	NA	NA		
Chloromethane		<10	<10	NA	<5.0	NA	NA	NA	NA		
Dibromochloromethane	50	<10	<10	NA	<5.0	NA	NA	NA	NA		
Ethylbenzene	5	6.0 J	5.0 J	NA	<5.0	<1.0	<1.0	<1.0	<1.0		
Methylene Chloride	5	<10	<10	NA	<5.0	NA	NA	NA	NA		
Styrene	5	2.0 J	<10	NA NA	<5.0	NA NA	NA NA	NA NA	NA		
Tetrachloroethene	5	<10	<10	NA	<5.0	NA 0.00	NA	NA	NA 0.00		
Toluene Trichloroethene	5 5	8.0 J <10	8.0 J	NA NA	<5.0	<0.30 NA	<0.30 NA	<0.30 NA	<0.30 NA		
Vinyl Chloride	2	<10	<10 <10	NA NA	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA		
Xylenes (total)	5	36	31	NA NA	<5.0 <5.0	<1.0	<1.0	<1.0	<1.0		
Total BTEX		50 J	44 J	NA NA	<5.0	<1.0	<1.0	<1.0	<1.0		
Total VOCs		52 J	81 J	NA NA	3.0 J	<1.0	<1.0	<1.0	<1.0		
Detected Semivolatile Organ	ics										
2,4-Dimethylphenol	50	<10	NA	<10	<10	NA	NA	NA	NA		
2,4-Dinitrophenol	10	<25	NA	<25	<50	NA	NA	NA	NA		
2-Chloronaphthalene	10	<10	NA	1.0 J	<10	NA	NA	NA	NA		
2-Methylnaphthalene		7.0 J	NA	6.0 J	<10	<0.80	< 0.60	< 0.90	NA		
2-Methylphenol		<10	NA	<10	<10	NA	NA	NA	NA		
2-Nitrophenol		<10	NA	0.50 J	<10	NA	NA	NA	NA		
3,3'-Dichlorobenzidine	5	<10	NA	<10	<20	NA	NA	NA	NA		
4-Methylphenol		<10	NA	<10	<10	NA	NA	NA	NA		
4-Nitroaniline	5	<25	NA	<25	<20	NA	NA	NA	NA		
Acenaphthene	20	1.0 J	NA	2.0 J	<10	<1.0	<0.80	<1.0	NA		
Acenaphthylene	50	1.0 J	NA NA	1.0 J	<10	<0.90	<0.80	<1.0	NA NA		
Anthracene Benzo(a)anthracene	0.002	0.50 J <10	NA NA	1.0 J 2.0 J	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <2.0	NA NA		
Benzo(a)pyrene	0.002	<10	NA NA	0.80 J	<10	<1.0	<1.0	<2.0	NA NA		
Benzo(b)fluoranthene	0.002	<10	NA NA	0.90 J	<10	<2.0	<2.0	<2.0	NA NA		
Benzo(g,h,i)perylene		<10	NA.	0.80 J	<10	<1.0	<1.0	<1.0	NA.		
Benzo(k)fluoranthene	0.002	<10	NA	1.0 J	<10	<1.0	<0.90	<1.0	NA		
bis(2-Ethylhexyl)phthalate	5	2.0 J	NA	55 B	0.90 J	NA	NA	NA	NA		
Butylbenzylphthalate	50	<10	NA	<10	<10	NA	NA	NA	NA		
Detected Semivolatile Organ	ics										
Carbazole		2.0 J	NA	2.0 J	<10	NA	NA	NA	NA		
Chrysene	0.002	<10	NA	2.0 J	<10	<1.0	<1.0	<1.0	NA		
Dibenzo(a,h)anthracene		<10	NA	0.20 J	<10	<2.0	<1.0	<2.0	NA		
Dibenzofuran		2.0 J	NA	3.0 J	<10	NA	NA	NA	NA		
Diethylphthalate	50	<10	NA	0.90 JB	0.40 J	NA	NA	NA	NA		
Dimethylphthalate	50	<10	NA	<10	<10	NA	NA	NA	NA		
Di-n-Butylphthalate	50	<10	NA NA	0.70 JB	<10	NA NA	NA NA	NA NA	NA		
Di-n-Octylphthalate	50	<10	NA NA	0.50 J	<10	NA -1.0	NA 11.0	NA -2.0	NA NA		
Fluoranthene Fluorene	50 50	0.90 J 1.0 J	NA NA	5.0 J 2.0 J	<10 <10	<1.0 <0.90	<1.0 <0.80	<2.0 <1.0	NA NA		
Indeno(1,2,3-cd)pyrene	0.002	<10	NA NA	0.70 J	<10	<0.90	<0.80	<1.0	NA NA		
Isophorone	50	<10	NA NA	<10	<10	<1.0 NA	NA	<2.0 NA	NA NA		
Naphthalene	10	38	NA NA	27	<10	<0.80	<0.70	<0.90	NA NA		
Phenanthrene	50	4.0 J	NA NA	10	<10	<0.80	<0.70	<0.90	NA		
Phenol	1	2.0 J	NA NA	<10	<10	NA	NA	NA	NA NA		
Pyrene	50	0.70 J	NA	4.0 J	<10	<1.0	<1.0	<1.0	NA		
Total PAHs		54 J	NA	66 J	<10	<2.0	<2.0	<2.0	NA		
Total SVOCs		62 J	NA	130 J	1.3 J	<2.0	<2.0	<2.0	NA		

			0111110002	, NEW TORK					
	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance	03/30/98	05/20/98	05/21/98	MW-8 04/21/03	02/07/06	05/15/06	08/17/06	11/17/06
Date Collected: Detected Pesticides	Values	03/30/98	05/20/98	05/21/98	04/21/03	02/07/06	05/15/06	08/17/06	11/17/06
4,4'-DDD	0.3	NA	NA	NA	<0.15	NA	NA	NA	NA
4.4'-DDE	0.2	NA NA	NA NA	NA NA	<0.10	NA NA	NA NA	NA NA	NA
4,4'-DDT	0.2	NA	NA	NA	<0.10	NA	NA	NA	NA
Aldrin	0	NA	NA	NA	< 0.050	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	<0.050	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	<0.050	NA	NA	NA	NA
Beta-BHC		NA NA	NA	NA NA	<0.050	NA	NA NA	NA NA	NA NA
Delta-BHC Dieldrin	0.004	NA NA	NA NA	NA NA	<0.050 <0.10	NA NA	NA NA	NA NA	NA NA
Endosulfan I	0.004	NA NA	NA NA	NA NA	<0.050	NA NA	NA NA	NA NA	NA NA
Endosulfan II		NA NA	NA.	NA NA	<0.10	NA.	NA.	NA.	NA.
Endosulfan Sulfate		NA	NA	NA	<0.10	NA	NA	NA	NA
Endrin	0	NA	NA	NA	<0.10	NA	NA	NA	NA
Endrin Aldehyde	5	NA	NA	NA	<0.10	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	NA	NA	NA	<0.050	NA	NA	NA	NA
Gamma-Chlordane	0.05	NA NA	NA	NA NA	<0.050	NA	NA NA	NA NA	NA NA
Heptachlor Heptachlor Epoxide	0.04 0.03	NA NA	NA NA	NA NA	<0.050 <0.050	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	NA NA	NA	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA
Detected Inorganics					-0.00	.4/1		1 .4/1	
Aluminum		1,070	NA	14,100	<2,500	NA	NA	NA	NA
Antimony	3	<4.00	NA	<4.00	<100	NA	NA	NA	NA
Arsenic	25	<2.00	NA	11.8	<200	NA	NA	NA	NA
Barium	1,000	48.4 BEN	NA	128 BE	10.3 BEJ	NA	NA	NA	NA
Beryllium		<1.00	NA	1.40 B	<25.0	NA	NA	NA	NA
Cadmium	5	1.50 BN	NA	3.20 B	<50.0	NA	NA	NA	NA
Calcium		1,090,000 E	NA	975,000 E	45,000 EJ	NA	NA	NA NA	NA NA
Chromium	50	27.5 N	NA	50.4	9.70 B	NA	NA	NA	NA
Detected Inorganics		3.30 BN	NA	0.20 B	-E0.0	NA	NA	NA	NA
Cobalt Copper	200	3.30 BN	NA NA	9.20 B 133	<50.0 <50.0	NA NA	NA NA	NA NA	NA NA
Cyanide	200	112	NA	<10.0	27.5	14.7	8.10 B	NA NA	NA NA
Cyanide, Available		NA	NA	NA NA	<2	<2	NA NA	NA	NA NA
Iron	300	1,030 EN	NA	16,800 E	277 B	NA	NA	NA	NA
Lead	25	1.20 B	NA	41.5	<500	NA	NA	NA	NA
Magnesium		88,600 E	NA	36,500 E	36,900 EJ	NA	NA	NA	NA
Manganese	300	701 EN	NA	1,840	16.5 B	NA	NA	NA	NA
Mercury	0.7	0.720	NA	0.200 N	<0.200 J	NA	NA	NA	NA
Nickel	100	21.3 BN	NA	27.6 B	<150	NA	NA NA	NA NA	NA NA
Potassium Selenium	10	1,860 B 18.4 N	NA NA	3,250 BE 20.5	<30.0 <2,000	NA NA	NA NA	NA NA	NA NA
Silver	50	<1.00	NA	<1.00	<200	NA NA	NA NA	NA NA	NA NA
Sodium		36,400 E	NA	31,800	29,700	NA.	NA.	NA NA	NA NA
Thallium		<3.00	NA	<3.00	<250	NA	NA	NA	NA
Vanadium		3.60 BN	NA	29.9 B	<2,000	NA	NA	NA	NA
Zinc	2,000	40.5	NA	171	<150	NA	NA	NA	NA
Detected Inorganics-Filtered									
Iron	300	NA	NA	NA	<50.0	NA	NA	NA	NA
Manganese	300	NA	NA	NA	<2,000	NA	NA	NA	NA
Detected Miscellaneous									
Alkalinity, CaCO3		30,000,000	NA	1,350,000	NA	NA	NA	NA	NA
Available Cyanide BOD		NA 4.200	NA NA	NA 3.000	NA -2.000	NA NA	NA NA	NA NA	NA NA
Carbon Dioxide by Headspace		4,200 NA	NA NA	3,900 NA	<2,000 2,000	NA NA	NA NA	NA NA	NA NA
Carbon monoxide		NA NA	NA NA	NA NA	<400	NA NA	NA	NA NA	NA
Carbonate, CaCO3		<2,000	NA	533,000	NA	NA	NA	NA	NA
COD		27,600	NA	19,600	14,700	NA	NA	NA	NA
Chloride	250,000	16,700	NA	23,000	25,000	NA	NA	NA	NA
DOC Average Quads		NA	NA	NA	420 B	NA	NA	NA	NA
Hardness, Ca/CO3		3,100,000	NA	2,580,000	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous		NA NA	NA NA	NA NA	NA 10	NA NA	NA NA	NA NA	NA NA
Methane Nitrate + Nitrite (as N)		NA NA	NA NA	NA NA	18 NA	NA 1,330	NA NA	NA NA	NA NA
Nitrate Nitrogen	10,000	7,890	NA NA	5,310	3,700	1,330 NA	NA NA	NA NA	NA NA
Nitrite Nitrogen	1,000	96	NA	141	49 B	NA NA	NA NA	NA NA	NA NA
Oil and Grease		<1,000	NA	17,700	NA NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	NA	NA
Oxygen		NA	NA	NA	3,300	NA	NA	NA	NA
pH		12.4	NA	12.32	NA	NA	NA	NA	NA
Sulfate	250,000	230,000	NA	223,000	210,000	180,000	NA	NA	NA
Sulfide	50	<5,000	NA	<1,000	<1,000	NA NA	NA NA	NA NA	NA NA
TOC Average Quads	1,000,000	NA 1 360 000	NA	NA 1 690 000	3,700	NA NA	NA NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	1,360,000	NA	1,680,000	NA	NA	NA	NA	NA

Location ID: Date Collected:	Water Guidance			MW-8D		MW-9S	MW-9D	MW-10S	
		00/00/00	05/00/00		0.4/0.4/0.0				MW-10D
Detected Volatile Organics	Values	03/30/98	05/20/98	10/31/00	04/21/03	10/30/00	10/27/00	10/31/00	10/31/00
1,1,1-Trichloroethane	<i>E</i> [<10	<10	<500 [<500]	<25	<10	<200	2.0 J	<100
1,1,2,2-Tetrachloroethane	5 5	<10	<10	<500 [<500] <500 [<500]	<25 <25	<10	<200	<10 <10	<100
1,1,2-Trichloroethane	1	<10	<10	<500 [<500] <500 [<500]	<25	<10	<200	<10	<100
1.1-Dichloroethane	5	<10	<10	<500 [<500]	<25	<10	24 J	0.80 J	11 J
2-Butanone		<10	<10	<500 [<500]	16 J	<10	<200	<10	<100
2-Hexanone	50	<10	<10	<500 [<500]	<50	<10	<200	<10	<100
4-Methyl-2-pentanone		<10	<10	<500 [<500]	<50	<10	<200	<10	<100
Acetone	50	<10	320	1,300 [1,100]	50	7.0	410	3.0 J	59 J
Benzene	1	14 J	390	430 J [430 J]	21 J	<10	240	<10	1,000
Bromodichloromethane	50	<10	<10	<500 [<500]	<25	<10	<200	<10	<100
Bromoform	50	<10	<10	<500 [<500]	<25	<10	<200	<10	<100
Bromomethane Carbon Disulfide	5	<10 <10	<10 <10	<500 [<500] <500 [<500]	<25 <25	<10 <10	<200 <200	<10 <10	<100 <100
Chlorobenzene	5	<10	<10	<500 [<500] <500 [<500]	<25	<10	<200	<10	<100
Chloroform	7	<10	<10	<500 [<500] <500 [<500]	<25	<10	<200	<10	<100
Chloromethane		<10	<10	<500 [<500]	<25	<10	<200	<10	<100
Dibromochloromethane	50	<10	<10	<500 [<500]	<25	<10	<200	<10	<100
Ethylbenzene	5	130	310	410 J [410 J]	100	0.40 J	370	<10	170
Methylene Chloride	5	<10	31 J	330 J [380 J]	<25	0.50 J	370	0.70 J	14 J
Styrene	5	330	960	1,100 [1,100]	270	<10	<200	<10	540
Tetrachloroethene	5	<10	<10	<500 [<500]	<25	0.50 J	<200	<10	<100
Toluene	5	230	3,700	4,400 [4,500]	120	2.0 J	780	<10	1,900
Trichloroethene	5	<10	<10	<500 [<500]	<25	2.0 J	<200	<10	<100
Vinyl Chloride	2	<10 1,500	<10 4,900	<500 [<500]	<25 1,300	<10 4.0 J	<200 3.900	<10	<100
Xylenes (total) Total BTEX	5	1,500 1,900 J	9,300	5,800 [5,900] 11,000 J [11,000 J]	1,300 J	4.0 J 6.4 J	5,300	<10 <10	2,700 5,800
Total VOCs		2,200 J	11,000 J	14,000 J [14,000 J]	1,900 J	16 J	6,100 J	6.5 J	6,400 J
Detected Semivolatile Organic		2,200 0	11,000 0	14,000 0 [14,000 0]	1,000 0	100	0,1000	0.0 0	0,400 0
2,4-Dimethylphenol	50	<10	130 J	150 J [140 J]	<1,000	<22	<2,000	<54	200 J
2,4-Dinitrophenol	10	<25	<25	<2,700 [<2,500]	<5,000	<55	<5,000	<140	<2,000
2-Chloronaphthalene	10	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
2-Methylnaphthalene		720 J	89 J	180 J [170 J]	750 J	9.0 J	340 J	10 J	880 J
2-Methylphenol		<10	82 J	<1,100 [<1,000]	<1,000	<22	<2,000	<54	54 J
2-Nitrophenol		<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
3,3'-Dichlorobenzidine	5	<10	<10	<1,100 [<1,000]	<2,000	<22	<2,000	<54	<2,000
4-Methylphenol		<10	100 J	<1,100 [<1,000]	<1,000	<22	<2,000	<54	58 J
4-Nitroaniline	5	<25	<25	<2,700 [<2,500]	<2,000	<55	<5,000	<140	<2,000
Acenaphthene Acenaphthylene	20	<10 320 J	<10 32 J	<1,100 [<1,000]	<1,000 320 J	0.80 J 11 J	45 J <2,000	8.0 J 29 J	41 J 460 J
Anthracene	50	<10	<10	63 J [57 J] <1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Benzo(a)anthracene	0.002	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Benzo(a)pyrene	0	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Benzo(b)fluoranthene	0.002	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Benzo(g,h,i)perylene		<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Benzo(k)fluoranthene	0.002	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
bis(2-Ethylhexyl)phthalate	5	<10	<10	<1,100 [<1,000]	<1,000	0.50 J	<2,000	<54	<2,000
Butylbenzylphthalate	50	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Detected Semivolatile Organic	cs	04.1	10 10	4 400 [4 000]	1 04 1	20.1	400	00.1	050 1
Carbazole	0.000	84 J	<10	<1,100 [<1,000]	91 J	20 J	120	23 J	350 J
Chrysene Dibenzo(a,h)anthracene	0.002	<10 <10	<10 <10	<1,100 [<1,000] <1,100 [<1,000]	<1,000 <1,000	<22 <22	<2,000 <2,000	<54 <54	<2,000 <2,000
Dibenzofuran		74 J	<10	<1,100 [<1,000] <1,100 [28 J]	110 J	2.0 J	<2,000	18 J	160 J
Diethylphthalate	50	<10	<10	<1,100 [28 3]	<1,000	<22	<2,000	<54	<2,000
Dimethylphthalate	50	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Di-n-Butylphthalate	50	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Di-n-Octylphthalate	50	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Fluoranthene	50	<10	<10	<1,100 [<1,000]	<1,000	0.30 J	<2,000	<54	<2,000
Fluorene	50	52 J	<10	<1,100 [<1,000]	89 J	3.0 J	<2,000	15 J	120 J
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Isophorone	50	<10	<10	<1,100 [<1,000]	<1,000	<22	<2,000	<54	<2,000
Naphthalene	10	7,800	5,600	5,300 [5,300]	4,600	120	11,000	260 J	12,000
Phenanthrene	50	<10	<10	<1,100 [<1,000]	59 J	0.40 J	<2,000	3.0 J	65 J
Phenol	1	100 J	<10	<1,100 [<1,000]	<1,000	3.0 J	80 J	<54	<2,000 <2,000
	50	-10							
Pyrene Total PAHs	50	<10 8,900 J	<10 5,700 J	<1,100 [<1,000] 5,500 J [5,500 J]	<1,000 5,800 J	<22 150 J	<2,000 11.000 J	<54 330 J	14.000 J

STRACUSE, NEW TORK										
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-8D		MW-9S	MW-9D	MW-10S	MW-10D	
Date Collected:	Values	03/30/98	05/20/98	10/31/00	04/21/03	10/30/00	10/27/00	10/31/00	10/31/00	
Detected Pesticides										
4,4'-DDD	0.3	NA	NA	<0.11 [<0.11]	<0.15	<0.11	<0.10	0.020 J	<0.10	
4,4'-DDE 4.4'-DDT	0.2 0.2	NA NA	NA NA	<0.11 [<0.11]	0.053 J <0.10	<0.11 <0.11	<0.10 <0.10	<0.11 0.097 J	<0.10 <0.10	
Aldrin	0.2	NA NA	NA NA	<0.11 [<0.11] <0.054 [<0.055]	<0.10	<0.11	<0.10	<0.054	<0.10	
Alpha-BHC	0.01	NA NA	NA NA	<0.054 [0.018 J]	0.022 J	<0.056	<0.050	<0.054	<0.050	
Alpha-Chlordane	0.05	NA	NA	<0.054 [<0.055]	0.028 J	< 0.056	<0.050	<0.054	<0.050	
Beta-BHC		NA	NA	<0.054 [0.073]	0.027 J	<0.056	< 0.050	< 0.054	< 0.050	
Delta-BHC		NA	NA	<0.054 [0.046 J]	0.12	0.037 J	< 0.050	0.057	<0.050	
Dieldrin	0.004	NA NA	NA	<0.11 [<0.11]	<0.10	<0.11	0.038 J	<0.11	<0.10	
Endosulfan I Endosulfan II		NA NA	NA NA	<0.054 [<0.055] <0.11 [<0.11]	<0.050 0.13	<0.056 <0.11	<0.050 0.024 J	<0.054 <0.11	<0.050 <0.10	
Endosulfan Sulfate		NA NA	NA	<0.11 [<0.11]	<0.10	<0.11	<0.10	<0.11	<0.10	
Endrin	0	NA	NA	<0.11 [0.029 J]	0.10	<0.11	<0.10	0.069 J	<0.10	
Endrin Aldehyde	5	NA	NA	<0.11 [<0.11]	<0.10	<0.11	<0.10	<0.11	<0.10	
Gamma-BHC (Lindane)	0.05	NA	NA	<0.054 [<0.055]	< 0.050	<0.056	< 0.050	< 0.054	< 0.050	
Gamma-Chlordane	0.05	NA	NA	<0.054 [<0.055]	<0.050	<0.056	<0.050	<0.054	<0.050	
Heptachlor	0.04	NA NA	NA	<0.054 [<0.055]	<0.050	<0.056	<0.050	<0.054	<0.050	
Heptachlor Epoxide Methoxychlor	0.03 35	NA NA	NA NA	<0.054 [<0.055] <0.54 [<0.55]	<0.050 <0.50	<0.056 <0.56	0.013 J <0.50	<0.054 <0.54	<0.050 <0.50	
Detected Inorganics	55	14/1	INA	₹0.00	\U.UU	\0.00	~0.00	NO.04	\0.50	
Aluminum		7,540	44,700	124 [128]	<2,500	719	504	36.4	44.7	
Antimony	3	<4.00	4.00 B	<5.00 [<5.00]	<100	<5.00	<5.00	<5.00	<5.00	
Arsenic	25	5.30 B	40.5	<2.50 [<2.50]	<200	4.30	2.60	11.1	<2.50	
Barium	1,000	62.4 BEN	408	34.2 [34.8]	11.9 BEJ	13.0	14.9	10.5	30.7	
Beryllium		<1.00	2.90 B	<0.500 [<0.500]	<25.0	<5.00	<5.00	<5.00	<5.00	
Cadmium	5	<1.00	1.60 B	<0.500 [<0.500]	<50.0	<5.00	<5.00	<5.00	<5.00	
Calcium Chromium	 50	258,000 E 16.6 N	724,000 111	34,000 [34,200] 1.10 [<1.00]	208,000 EJ <50.0	82,500 1.30	51,600 4.40	132,000 1.80	166,000 1.90	
Detected Inorganics	50	10.0 IN	111	1.10 [<1.00]	<50.0	1.30	4.40	1.00	1.90	
Cobalt		5.90 BN	45.5 B	<1.00 [<1.00]	<50.0	<1.00	<1.00	1.20	<1.00	
Copper	200	32.8	216	1.90 [2.40]	<50.0	3.10	3.80	5.00	1.60	
Cyanide	200	1,590	352	358 [299]	717	<10.0	1,650	143	73.0	
Cyanide, Available		NA	NA	11 [21]	10	<2	5	17	23	
Iron	300	14,600 EN	103,000	414 [407]	664 B	110	2,220	271	141	
Lead	25	18.7	133	<2.00 [<2.00]	<50.0	<2.00	<2.00	<2.00	<2.00	
Magnesium	300	8,800 E 358 EN	72,000 2,960	453 [458] 7.30 [7.50]	263 BJ <75.0	3,370 2.20	35,700 29.6	41,000 105	3,640 3.40	
Manganese Mercury	0.7	0.380	0.310 N	<0.100 [<0.100]	<0.200 J	<0.100	<0.100	<0.100	<0.100	
Nickel	100	19.7 BN	120	2.70 [2.50]	<50.0	1.80	6.60	26.0	7.10	
Potassium		16,100	14,500	10,300 [10,500]	13,500	3,370	3,610	16,100	16,700	
Selenium	10	6.00 N	11.8	6.40 [6.70]	<150	<5.00	<5.00	23.0	8.30	
Silver	50	<1.00	<1.00	<1.00 [<1.00]	<30.0	<1.00	<1.00	<1.00	<1.00	
Sodium		79,300 E	131,000	140,000 [142,000]	66,600	108,000	100,000	51,900	90,200	
Thallium Vanadium		<3.00 16.5 BN	<3.00 88.6	<6.00 [<6.00] 4.00 [4.00]	<200 <30.0	<6.00 6.80	<6.00 2.60	<6.00 4.80	<6.00 4.00	
Zinc	2,000	61.5	440	6.70 [8.00]	<250	<5.00	7.30	21.2	<5.00	
Detected Inorganics-Filtered		01.0	440	0.70 [0.00]	1200	٧٥.٥٥	7.00	21.2	٧٥.٥٥	
Iron	300	NA	NA	199 [243]	<2,000	68.1	780	205	<100	
Manganese	300	NA	NA	<10.0 [<10.0]	<150	1.40	4.50	120	<10.0	
Detected Miscellaneous										
Alkalinity, CaCO3		394,000	142,000	NA	NA	NA	NA	NA	NA	
Available Cyanide		NA	NA	NA	NA	NA	NA 10.000	NA 0.400	NA 10.000	
BOD Carbon Dioxide by Headspace		22,200 NA	20,100 NA	10,600 [15,400] <600 [<600]	<2,000	4,600	42,900 NA	3,100 76,010	42,600	
Carbon Dioxide by Headspace Carbon monoxide		NA NA	NA NA	<600 [<600] <400 [<400]	<600 <400	<600 <400	NA NA	76,010 <400	<600 <400	
Carbonate, CaCO3		198,000	12,700	NA	NA NA	NA	NA NA	NA	NA	
COD		36,300	51,500	129,000 [127,000]	98,100	22,000	142,000	24,400	147,000	
Chloride	250,000	148,000	264,000	333,000 [346,000]	100,000	91,600	236,000	24,000	157,000	
DOC Average Quads		NA	NA	43,000 [45,700]	25,000	9,300	36,100	16,300	66,200	
Hardness, Ca/CO3		680,000	2,100,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Iron, Ferric Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Methane		NA NA	NA NA	11,240 [11,220]	920	<70	NA NA	<70	360	
Nitrate + Nitrite (as N)		NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	
Nitrate Nitrogen	10,000	<100	252	<100 [<100]	<100	<100	<100	<100	413	
Nitrite Nitrogen	1,000	14	217	<100 [<100]	230	131	<100	<100	413	
Oil and Grease		1,100	1,700	NA	NA	NA	NA	NA	NA	
Orthophosphate		NA NA	NA NA	NA	NA 610	NA 4.410	NA NA	NA 1.010	NA 2.500	
Oxygen		NA 11.5	NA o o	880 [750]	610 NA	4,410 NA	NA NA	1,010 NA	3,590 NA	
pH Sulfate	250,000	11.5 243,000	8.9 69,600	NA 84,200 [77,000]	170,000	69,000	124,000	157.000	187,000	
Sulfide	50	7,900	4,730	6,000 [6,300]	8,200	<1,000	15,600	<1,000	<1,000	
TOC Average Quads		NA	NA	44,900 [47,400]	29,000	8,690	46,000	16,600	65,600	
Total Dissolved Solids	1,000,000	761,000	618,000	NA	NA	NA	NA	NA	NA	

Location ID:	NYSDEC TOGS 1.1.1 Water Guidance				MW-11S			
Date Collected:	Values	11/01/00	03/25/03	01/30/06	05/09/06	08/16/06	11/14/06	03/01/13
Detected Volatile Organics								
1,1,1-Trichloroethane	5	<20	<5.0	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<20	<5.0	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	<20	<5.0	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	<20	<5.0	NA	NA	NA	NA	NA
2-Butanone		8.0 J	<10	NA	NA	NA	NA	NA
2-Hexanone	50	<20	<10	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		<20	<10	NA	NA	NA	NA	NA
Acetone	50	53	23	NA	NA	NA	NA	NA
Benzene	1	28	6.0	6.1	3.5 J	5.7	4.1 J	4.2
Bromodichloromethane	50	<20	<5.0	NA	NA	NA	NA	NA
Bromoform	50	<20	0.40	NA NA	NA NA	NA NA	NA	NA
Bromomethane	5	<20	<5.0		NA NA	NA NA	NA NA	NA
Carbon Disulfide Chlorobenzene	5	<20 <20	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	7	<20	<5.0	NA NA	NA NA	NA NA	NA NA	NA NA
Chloromethane		<20	<5.0	NA NA	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	<20	<5.0	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5	47	11	38	18	31	26	17
Methylene Chloride	5	7.0 J	<5.0	NA	NA	NA NA	NA	NA
Styrene	5	89	12	NA NA	NA NA	NA	NA	NA
Tetrachloroethene	5	<20	<5.0	NA NA	NA NA	NA	NA	NA
Toluene	5	280	40	54	26	33	23	12
Trichloroethene	5	<20	<5.0	NA	NA	NA	NA	NA
Vinyl Chloride	2	<20	<5.0	NA	NA	NA	NA	NA
Xylenes (total)	5	500	<5.0	210	94	140	110	92
Total BTEX		860	57	310	140 J	210	160 J	120
Total VOCs		1,000 J	92	310	140 J	210	160 J	120
Detected Semivolatile Organ								
2,4-Dimethylphenol	50	<260	<54	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	<660	<270	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	<260	<54	NA	NA	NA	NA	NA
2-Methylnaphthalene		180 J	47 J	78 J	84 J	95 J	45 J	NA
2-Methylphenol		<260	<54	NA	NA	NA	NA	NA
2-Nitrophenol		<260	<54	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	<260	<110	NA NA	NA NA	NA NA	NA	NA NA
4-Methylphenol 4-Nitroaniline	5	<260 <660	<54 <110	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline Acenaphthene	20	<260	<110 <54	<16	<9.0	<16	<8.0	NA NA
Acenaphthylene		52 J	12 J	25 J	24 J	31 J	15 J	NA NA
Anthracene	50	4.0 J	<54	<20	<11	<20	<10	NA NA
Benzo(a)anthracene	0.002	<260	<54	<24	<13	<24	<8.0	NA
Benzo(a)pyrene	0	<260	<54	<22	<12	<22	<5.0	NA
Benzo(b)fluoranthene	0.002	<260	<54	<31	<17	<31	<10	NA
Benzo(g,h,i)perylene		<260	<54	<21	<11	<21	<3.0	NA
Benzo(k)fluoranthene	0.002	<260	<54	<18	<10	<18	<9.0	NA
bis(2-Ethylhexyl)phthalate	5	<260	<54	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	<260	<54	NA	NA	NA	NA	NA
Detected Semivolatile Organ	nics							
Carbazole		21 J	<54	NA	NA	NA	NA	NA
Chrysene	0.002	<260	<54	<19	<11	<19	<12	NA
Dibenzo(a,h)anthracene		<260	<54	<27	<15	<27	<2.0	NA
Dibenzofuran		13 J	4.0 J	NA	NA	NA	NA	NA
Diethylphthalate	50	<260	<54	NA	NA	NA	NA	NA
Dimethylphthalate	50	<260	<54	NA	NA	NA	NA	NA
Di-n-Butylphthalate	50	<260	<54	NA	NA	NA	NA	NA
Di-n-Octylphthalate	50	<260	<54	NA	NA	NA	NA	NA
Fluoranthene	50	<260	<54	<22	<12	<22	<9.0	NA
Fluorene	50	9.0 J	<54	<15	<8.0	<15	<7.0	NA
Indeno(1,2,3-cd)pyrene	0.002	<260	<54	<23	<13	<23	<3.0	NA
Isophorone	50	<260	<54	NA 000	NA 500	NA 040	NA 460	NA 4.000
Naphthalene	10	1,900	380	920	580	840	460	1,800
Phenanthrene	50	4.0 J	<54	<13	<7.0	<13	<7.0	NA NA
Phenol	1 50	31 J <260	5.0 J <54	NA <20	NA <11	NA <20	NA <10	NA NA
Pyrene Total PAHs	50	<260 2,200 J	<54 440 J	1,000 J	<11 690 J	<20 970 J	<10 520 J	NA NA
Total SVOCs		2,200 J 2,200 J	440 J 450 J	1,000 J 1,000 J	690 J	970 J 970 J	520 J 520 J	NA NA
10tai 37008		∠,∠∪∪ J	450 J	1,000 J	090 J	9/03	320 J	IN/A

	NYSDEC TOGS 1.1.1							
Location ID:	Water Guidance				MW-11S			
Date Collected:	Values	11/01/00	03/25/03	01/30/06	05/09/06	08/16/06	11/14/06	03/01/13
Detected Pesticides								
4,4'-DDD	0.3	0.014 J	<0.017	NA	NA	NA	NA	NA
4,4'-DDE	0.2	<0.10	<0.11	NA	NA	NA	NA	NA
4,4'-DDT	0.2	0.090 J	<0.11 J <0.056	NA	NA NA	NA NA	NA NA	NA NA
Aldrin Alpha-BHC	0.01	<0.050	<0.056	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	0.01	<0.050 <0.050	<0.056	NA NA	NA NA	NA NA	NA NA	NA NA
Beta-BHC	0.05	<0.050	<0.056	NA NA	NA NA	NA NA	NA NA	NA NA
Delta-BHC		0.017 J	<0.056	NA NA	NA NA	NA NA	NA.	NA NA
Dieldrin	0.004	<0.10	<0.11	NA	NA NA	NA NA	NA	NA NA
Endosulfan I		<0.050	<0.056	NA	NA	NA	NA	NA
Endosulfan II		<0.10	<0.11	NA	NA	NA	NA	NA
Endosulfan Sulfate		0.016 J	<0.11	NA	NA	NA	NA	NA
Endrin	0	< 0.10	<0.11	NA	NA	NA	NA	NA
Endrin Aldehyde	5	<0.10	<0.11	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	< 0.050	0.0084 J	NA	NA	NA	NA	NA
Gamma-Chlordane	0.05	<0.050	<0.056	NA	NA	NA	NA	NA
Heptachlor	0.04	<0.050	<0.034 J	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	<0.050	<0.056	NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	<0.50	<0.56	NA	NA	NA	NA	NA
Detected Inorganics	1	0.400	-2.500	NI A	N/A	N1A	I NIA	NIA.
Aluminum	3	2,160 <5.00	<2,500 <100	NA NA	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	<5.00 2.60	<100 <200	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	1,000	80.8	34.3	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium	1,000	<5.00	<25.0	NA NA	NA NA	NA NA	NA	NA NA
Cadmium	5	<5.00	<50.0	NA NA	NA NA	NA NA	NA	NA NA
Calcium		356,000	393,000	NA	NA	NA	NA	NA
Chromium	50	4.20	<50.0	NA	NA	NA	NA	NA
Detected Inorganics								
Cobalt		1.30	<50.0	NA	NA	NA	NA	NA
Copper	200	7.10	<50.0	NA	NA	NA	NA	NA
Cyanide	200	683	242 J	291	353	216	418 J	1,100
Cyanide, Available		3	8	<2	NA	NA	NA	30
Iron	300	4,830	<1,000	NA	NA	NA	NA	243
Lead	25	2.90	<50.0	NA	NA	NA	NA	NA
Magnesium		2,170	81,400	NA	NA	NA	NA	NA
Manganese	300	210	<75.0	NA	NA	NA	NA	1.70 B
Mercury	0.7	<0.100	<0.200	NA	NA NA	NA NA	NA NA	NA NA
Nickel	100	6.60	<50.0	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium Selenium	10	18,600 6.40	8,630 EJ <150 J	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	50	<1.00	<30.0	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium		97,200	147,000	NA NA	NA NA	NA NA	NA	NA NA
Thallium		<6.00	<200	NA	NA	NA NA	NA	NA
Vanadium		6.70	<30.0	NA	NA	NA	NA	NA
Zinc	2,000	37.0	<250	NA	NA	NA	NA	NA
Detected Inorganics-Filtered								
Iron	300	451	<200	NA	NA	NA	NA	NA
Manganese	300	<10.0	<15.0	NA	NA	NA	NA	NA
Detected Miscellaneous								
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	NA	NA	NA	10,700
BOD		NA	7,000	NA	NA	NA	NA	NA
Carbon Dioxide by Headspace		<600	<600	NA	NA	NA	NA	<100
Carbon monoxide		<400	<400	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA
COD		81,900	46,700	NA	NA	NA	NA	NA
Chloride	250,000	157,000	200,000	NA NA	NA NA	NA NA	NA NA	NA 12.400
DOC Average Quads Hardness, Ca/CO3		21,600 NA	12,000 NA	NA NA	NA NA	NA NA	NA NA	12,400 NA
Iron, Ferric		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	240
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<100
Methane		330	34	NA NA	NA NA	NA NA	NA	53.1
Nitrate + Nitrite (as N)		NA	NA	2,410	NA NA	NA NA	NA	700
Nitrate Nitrogen	10,000	<100	370	NA NA	NA	NA	NA	690
Nitrite Nitrogen	1,000	<100	240	NA	NA	NA	NA	14
Oil and Grease		NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	75 B
Oxygen		2,930	10,000	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	245,000	930,000	359,000	NA	NA	NA	323,000
Sulfide	50	<1,000	<1,000	NA	NA	NA	NA	14,400
TOC Average Quads		21,900	13,000	NA	NA	NA	NA	NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA

			STRACUSE, NEW						
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-1	1D				MW-11D2
Date Collected:		11/01/00	03/25/03	01/26/06	05/10/06	08/17/06	11/15/06	03/01/13	03/26/03
Detected Volatile Organics									
1,1,1-Trichloroethane	5	<100	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
1,1,2,2-Tetrachloroethane	5	<100	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
1,1,2-Trichloroethane	1	<100	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
1,1-Dichloroethane	5	<100	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
2-Butanone		<100	<10 [<10]	NA	NA	NA	NA	NA	<10
2-Hexanone	50	<100	<10 [<10]	NA	NA	NA	NA	NA	<10
4-Methyl-2-pentanone		<100	<10 [<10]	NA	NA	NA	NA	NA	<10
Acetone	50	<100	<10 [<10]	NA	NA	NA	NA	NA	<10
Benzene	1 50	1,200	84 [84]	460	200	190	340	190	<5.0
Bromodichloromethane	50	<100	<5.0 [<5.0]	NA	NA NA	NA	NA NA	NA NA	<5.0
Bromoform	50 5	<100 <100	<5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0
Bromomethane Carbon Disulfide		<100	<5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0
Chlorobenzene	5	<100	<5.0 [<5.0] <5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0
Chloroform	7	<100	<5.0 [<5.0]	NA	NA NA	NA NA	NA NA	NA	<5.0
Chloromethane		<100	<5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0
Dibromochloromethane	50	<100	<5.0 [<5.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0
Ethylbenzene	5	570	62 [62]	250	150	140	150	250	<5.0
Methylene Chloride	5	16 J	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
Styrene	5	<100	46 [46]	NA.	NA.	NA.	NA NA	NA NA	<5.0
Tetrachloroethene	5	<100	<5.0 [<5.0]	NA NA	NA.	NA NA	NA	NA NA	<5.0
Toluene	5	2,000	51 [51]	580	98	130	380	180	<5.0
Trichloroethene	5	<100	<5.0 [<5.0]	NA	NA	NA	NA	NA	<5.0
Vinyl Chloride	2	<100	3.0 J [3.0 J]	NA	NA	NA	NA	NA	<5.0
Xylenes (total)	5	2,800	230 [230]	530	170	180	320	360	<5.0
Total BTEX		6,600	430 [430]	1,800	620	640	1,200	980	<5.0
Total VOCs		6,600 J	480 J [480 J]	1,800	620	640	1,200	980	<10
Detected Semivolatile Organ	nics								
2,4-Dimethylphenol	50	240 J	<210 [<200]	NA	NA	NA	NA	NA	<11
2,4-Dinitrophenol	10	<2,500	<1,100 [<1,000]	NA	NA	NA	NA	NA	<54
2-Chloronaphthalene	10	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
2-Methylnaphthalene		<1,000	96 J [98 J]	33 J	<32	15 J	23 J	NA	<11
2-Methylphenol		210 J	<210 [<200]	NA	NA	NA	NA	NA	<11
2-Nitrophenol		<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
3,3'-Dichlorobenzidine	5	<1,000	<420 [400]	NA	NA	NA	NA	NA	<22
4-Methylphenol		300 J	20 J [<200 J]	NA	NA	NA	NA	NA	<11
4-Nitroaniline	5	<2,500	<420 [400]	NA	NA .40	NA 47	NA 47	NA	<22
Acenaphthene	20	<1,000	<210 [<200]	<20	<40	<17	<17	NA	<11
Acenaphthylene	50	<1,000	37 J [37 J]	<19	<38	<16	<17	NA NA	<11
Anthracene Benzo(a)anthracene	0.002	<1,000 <1,000	<210 [<200] <210 [<200]	<25 <30	<50 <60	<22 <26	<21 <16	NA NA	<11 <11
Benzo(a)pyrene	0.002	<1,000	<210 [<200]	<27	<54	<23	<11	NA	<11
Benzo(b)fluoranthene	0.002	<1,000	<210 [<200] <210 [<200]	<38	<54 <77	<33	<20	NA NA	<11
Benzo(g,h,i)perylene	0.002	<1,000	<210 [<200]	<26	<52	<23	<7.0	NA NA	<11
Benzo(k)fluoranthene	0.002	<1,000	<210 [<200]	<23	<46	<20	<20	NA NA	<11
bis(2-Ethylhexyl)phthalate	5	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Butylbenzylphthalate	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Detected Semivolatile Organ					•				
Carbazole		<1,000	<210 J [13 J]	NA	NA	NA	NA	NA	<11
Chrysene	0.002	<1,000	<210 [<200]	<24	<48	<21	<24	NA	<11
Dibenzo(a,h)anthracene		<1,000	<210 [<200]	<34	<67	<29	<5.0	NA	<11
Dibenzofuran		<1,000	12 J [12 J]	NA	NA	NA	NA	NA	<11
Diethylphthalate	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Dimethylphthalate	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Di-n-Butylphthalate	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Di-n-Octylphthalate	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Fluoranthene	50	<1,000	<210 [<200]	<27	<54	<23	<19	NA	<11
Fluorene	50	<1,000	<210 [<200]	<19	<38	<17	<15	NA	<11
Indeno(1,2,3-cd)pyrene	0.002	<1,000	<210 [<200]	<29	<58	<25	<7.0	NA	<11
Isophorone	50	<1,000	<210 [<200]	NA	NA	NA	NA	NA	<11
Naphthalene	10	3,700	1,100 [1,100]	1,200	1,300	950	1,300	4,000	4.0 J
Phenanthrene	50	<1,000	<210 [<200]	<16	<33	<14	<15	NA	<11
Phenol	1	120 J	<210 [<200]	NA	NA	NA	NA	NA	<11
Pyrene	50	<1,000	<210 [<200]	<25	<50	<22	<21	NA	<11
Total PAHs		3,700	1,200 J [1,200 J]	1,200 J	1,300	970 J	1,300 J	NA	4.0 J
Total SVOCs		4,600 J	1,300 J [2,100 J]	1,200 J	1,300	970 J	1,300 J	NA	4.0 J

			SYRACUSE, NEW	YORK					
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-1	1D				MW-11D2
Date Collected:	Values	11/01/00	03/25/03	01/26/06	05/10/06	08/17/06	11/15/06	03/01/13	03/26/03
Detected Pesticides									
4,4'-DDD	0.3	<0.11	<0.16 J [<0.16 J]	NA	NA	NA	NA	NA	<0.18
4,4'-DDE	0.2	0.031 J	<0.11 J [<0.11 J] <0.11 J [<0.11 J]	NA NA	NA NA	NA NA	NA NA	NA	<0.12
4,4'-DDT Aldrin	0.2	0.29 <0.054	<0.011 J [<0.11 J] <0.055 J [<0.053 J]	NA NA	NA NA	NA NA	NA NA	NA NA	<0.12 J <0.060
Alpha-BHC	0.01	<0.054	0.060 [0.053]	NA NA	NA	NA	NA	NA	<0.060
Alpha-Chlordane	0.05	<0.054	<0.055 J [<0.053 J]	NA NA	NA NA	NA	NA	NA NA	<0.060
Beta-BHC		<0.054	<0.055 J [<0.053 J]	NA	NA	NA	NA	NA	<0.060
Delta-BHC		0.019 J	<0.055 J [<0.053 J]	NA	NA	NA	NA	NA	0.012 J
Dieldrin	0.004	<0.11	<0.11 J [<0.11 J]	NA	NA	NA	NA	NA	<0.12
Endosulfan I		< 0.054	<0.055 J [<0.053 J]	NA	NA	NA	NA	NA	<0.060
Endosulfan II		<0.11	<0.11 J [<0.11 J]	NA	NA	NA	NA	NA	<0.12
Endosulfan Sulfate	0	<0.11 <0.11	<0.11 J [<0.11 J] <0.11 J [<0.11 J]	NA NA	NA NA	NA NA	NA NA	NA NA	<0.12 <0.12
Endrin Endrin Aldehyde	5	<0.11	<0.11 J [<0.11 J]	NA NA	NA NA	NA NA	NA NA	NA NA	<0.12
Gamma-BHC (Lindane)	0.05	<0.054	<0.055 J [<0.053 J]	NA NA	NA	NA NA	NA	NA	<0.060
Gamma-Chlordane	0.05	<0.054	<0.055 J [<0.053 J]	NA NA	NA.	NA	NA	NA NA	<0.060
Heptachlor	0.04	< 0.054	<0.055 J [<0.053 J]	NA	NA	NA	NA	NA	<0.060
Heptachlor Epoxide	0.03	< 0.054	<0.055 J [<0.053 J]	NA	NA	NA	NA	NA	< 0.060
Methoxychlor	35	<0.54	<0.55 J [<0.53 J]	NA	NA	NA	NA	NA	<0.60
Detected Inorganics									
Aluminum		1,580	189 B [298 B]	NA	NA	NA	NA	NA	1,390 B
Antimony	3	<5.00	<20.0 [<20.0]	NA	NA	NA	NA	NA	<100
Arsenic	25	7.00	<40.0 [<40.0]	NA	NA	NA	NA	NA	<200
Barium	1,000	67.8	591 [595]	NA	NA	NA	NA	NA	74.2
Beryllium		<5.00	<5.00 [<5.00]	NA	NA	NA	NA	NA	<25.0
Cadmium	5	<5.00	<10.0 [<10.0]	NA NA	NA NA	NA NA	NA NA	NA	<50.0 1.200.000
Calcium Chromium	50	34,900 4.60	109,000 [111,000] <10.0 [<10.0]	NA NA	NA NA	NA NA	NA NA	NA NA	<50.0
Detected Inorganics	30	4.00	<10.0 [<10.0]	INA	INA	INA	INA	INA	₹30.0
Cobalt		1.90	<10.0 [<10.0]	NA	NA	NA	NA	NA	<50.0
Copper	200	9.20	<10.0 [<10.0]	NA NA	NA NA	NA NA	NA NA	NA	8.60 B
Cyanide	200	158	65.0 J [40.1 J]	8.70 B	25.9	48.6	36.0 J	610	<10.0 J
Cyanide, Available		10	<2 [<2]	<2	NA NA	NA	NA	8.3	300
Iron	300	4,200	758 [677]	NA	NA	NA	NA	1,370	19,600
Lead	25	<2.00	<10.0 [<10.0]	NA	NA	NA	NA	NA	<50.0
Magnesium		2,920	31,200 [31,600]	NA	NA	NA	NA	NA	244,000
Manganese	300	91.2	238 [240]	NA	NA	NA	NA	29.2	238
Mercury	0.7	<0.100	<0.200 [<0.200]	NA	NA	NA	NA	NA	<0.200
Nickel	100	7.70	<10.0 [<10.0]	NA	NA	NA	NA	NA	<50.0
Potassium		7,580	24,200 EJ [24,400 EJ]	NA	NA	NA	NA	NA	571,000 EJ
Selenium	10	<5.00	<30.0 J [<30.0 J]	NA NA	NA NA	NA NA	NA NA	NA	<150 J
Silver Sodium	50	<1.00 212,000	<6.00 [<6.00] 156,000 [15,800]	NA NA	NA NA	NA NA	NA NA	NA NA	<30.0 593,000
Thallium		8.00	<40.0 [<40.0]	NA NA	NA	NA	NA	NA	<20.0
Vanadium		10.0	<6.00 [<6.00]	NA NA	NA.	NA NA	NA.	NA.	<30.0
Zinc	2,000	30.2	<50.0 [<50.0]	NA	NA	NA	NA	NA	<250
Detected Inorganics-Filtered									
Iron	300	164	350 [288]	NA	NA	NA	NA	NA	10,400
Manganese	300	19.0	237 [216]	NA	NA	NA	NA	NA	118
Detected Miscellaneous									
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	NA	NA	NA	72,200	NA
BOD		NA	5,000 [5,300]	NA	NA	NA	NA	NA 450	390 B
Carbon Dioxide by Headspace		<600	19,000 [20,000]	NA NA	NA NA	NA NA	NA NA	152	150,000
Carbon monoxide		<400 NA	<400 [<400] NA	NA NA	NA NA	NA NA	NA NA	NA NA	<400 NA
Carbonate, CaCO3 COD		124,000	40,500 [38,300]	NA NA	NA NA	NA NA	NA NA	NA NA	991,000
Chloride	250.000	465,000	1.300.000 [1.300.000]	NA NA	NA NA	NA NA	NA NA	NA NA	95.000.000
DOC Average Quads	230,000	35,100	9,600 [10,000]	NA	NA	NA	NA	16,300	19,000
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA NA	NA NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	1,400	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA	<100	NA
Methane		9,490	1,700 [1,700]	NA	NA	NA	NA	1,190	280
Nitrate + Nitrite (as N)		NA	NA	<40	NA	NA	NA	460	NA
Nitrate Nitrogen	10,000	<100	<100 [<100]	NA	NA	NA	NA	450	<25,000
Nitrite Nitrogen	1,000	<100	<5,000 [<5,000]	NA NA	NA	NA NA	NA	5.3 B	<50,000
Oil and Grease		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 100	NA NA
Orthophosphate		NA 1,010	NA 5,600 [5,200]	NA NA	NA NA	NA NA	NA NA	190 NA	NA 3,300
Oxygen pH		1,010 NA	5,600 [5,200] NA	NA NA	NA NA	NA NA	NA NA	NA NA	3,300 NA
Sulfate	250,000	26,300	160,000 [170,000]	15,700	NA NA	NA NA	NA NA	22,400	2,500,000
Sulfide	50	3,000	600 B [400 B]	NA	NA	NA NA	NA	1,700 B	500 B
TOC Average Quads		40,900	11,000 [10,000]	NA	NA	NA	NA	NA NA	20,000
Total Dissolved Solids	1,000,000	NA	NA NA	NA	NA	NA	NA	NA	NA
				•		•			

			0110	ACUSE, NEW	·Onn					
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance					MW-12S				
Date Collected:	Values	11/01/00	03/26/03	01/31/06	05/09/06	08/15/06	11/15/06	03/27/08	12/08/10	02/26/13
Detected Volatile Organics	•			•	•		•		•	•
1,1,1-Trichloroethane	5	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
2-Butanone		<10	13	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	<10	<10	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		<10	<10	NA	NA	NA	NA	NA	NA	NA
Acetone	50	49	84	NA	NA	NA	NA	NA	NA	NA
Benzene	1	4.0 J	7.0	7.9	9.4	11	3.9 J	NA	<5.0	5.6
Bromodichloromethane	50	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
Bromomethane	5	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		0.70 J	<5.0	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	<10	<5.0	NA	NA	NA	NA	NA	NA	NA
Chloromethane		<10	<5.0	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Dibromochloromethane	50	<10	<5.0	NA 00	NA	NA	NA 0.7	NA	NA 5.0	NA 10
Ethylbenzene Mathylana Chlorida	5	11	16	30	33	23	6.7	NA	<5.0	12
Methylene Chloride	5	2.0 J	<5.0	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Styrene	5	<10	9.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	5	<10	<5.0	NA 28	NA 27	NA 24	NA 0.1	NA NA	NA O 80 I	NA 15
Toluene Trichloroethene	5 5	15 <10	20 <5.0	28 NA	27 NA	24 NA	8.1 NA	NA NA	0.89 J NA	15 NA
	2	<10		NA NA	NA NA	NA NA	NA NA	NA NA		NA NA
Vinyl Chloride		76	<5.0	190	180	110	33	NA NA	NA 201	61
Xylenes (total)	5	110 J	<5.0 43	260	250	170	52 J	NA NA	2.9 J	94
Total BTEX Total VOCs		160 J	150	260	250	170	52 J	NA NA	3.8 J 3.8 J	94
Detected Semivolatile Organ		100 3	130	200	250	170	32 J	INA	3.0 3	34
		0.0.1	2.0 J	NA	NA	NA	NA	NA	NIA	NA
2,4-Dimethylphenol 2,4-Dinitrophenol	50 10	6.0 J <50	<55	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Chloronaphthalene	10	<20	<11	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene	10	3.0 J	0.80 J	3.0 J	7.0 J	4.0 J	1.0 J	NA NA	<4.2	NA NA
2-Methylphenol		6.0 J	2.0 J	NA	NA	NA	NA	NA NA	NA	NA
2-Nitrophenol		<20	<11	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
3,3'-Dichlorobenzidine	5	<20	<22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol		14 J	4.0 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
4-Nitroaniline	5	<50	<22	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.
Acenaphthene	20	<20	<11	<3.0	<3.0	<2.0	<0.90	NA.	<4.2	NA.
Acenaphthylene		<20	6.0 J	<3.0	<3.0	<2.0	<0.90	NA	<4.2	NA
Anthracene	50	<20	<11	<4.0	<4.0	<2.0	<1.0	NA	<4.2	NA
Benzo(a)anthracene	0.002	<20	<11	<5.0	<5.0	<3.0	<0.80	NA	<4.2	NA
Benzo(a)pyrene	0	<20	<11	<4.0	<4.0	<2.0	< 0.50	NA	<4.2	NA
Benzo(b)fluoranthene	0.002	<20	<11	<6.0	<6.0	<3.0	<1.0	NA	<4.2	NA
Benzo(g,h,i)perylene		<20	<11	<4.0	<4.0	<2.0	< 0.40	NA	<4.2	NA
Benzo(k)fluoranthene	0.002	<20	<11	<4.0	<4.0	<2.0	<1.0	NA	<4.2	NA
bis(2-Ethylhexyl)phthalate	5	0.50 J	<11	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ	nics									
Carbazole		0.60 J	<11	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<20	<11	<4.0	<4.0	<2.0	<1.0	NA	<4.2	NA
Dibenzo(a,h)anthracene		<20	<11	<5.0	<5.0	<3.0	< 0.30	NA	<4.2	NA
Dibenzofuran		<20	<11	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Di-n-Octylphthalate	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	50	<20	<11	<4.0	<4.0	<2.0	<1.0	NA	<4.2	NA
Fluorene	50	<20	<11	<3.0	<3.0	<2.0	<0.80	NA	<4.2	NA
Indeno(1,2,3-cd)pyrene	0.002	<20	<11	<5.0	<5.0	<3.0	<0.40 J	NA	<4.2	NA
Isophorone	50	<20	<11	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	83	69	190	240	130	34	NA	<4.2	150
Phenanthrene	50	<20	<11	<3.0	<3.0	<1.0	<0.80	NA	<4.2	NA
Phenol	1	140	<11	NA	NA	NA	NA	NA	NA	NA
Pyrene	50	<20	<11	<4.0	<4.0	<2.0	<1.0	NA	<4.2	NA
Total PAHs		86 J	76 J	190 J	250 J	130 J	35 J	NA	<4.2	NA
Total SVOCs		250 J	84 J	190 J	250 J	130 J	35 J	NA	<4.2	NA

				ACUSE, NEW						
1	NYSDEC TOGS 1.1.1					NNW 400				
Location ID: Date Collected:	Water Guidance Values	11/01/00	03/26/03	01/31/06	05/09/06	MW-12S 08/15/06	11/15/06	03/27/08	12/08/10	02/26/13
Detected Pesticides	values	11/01/00	00/20/00	01/01/00	00/03/00	00/10/00	11/10/00	00/21/00	12/00/10	02/20/10
4,4'-DDD	0.3	<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	0.2	0.021 J	<0.10 J	NA	NA	NA	NA	NA	NA	NA
Aldrin	0	<0.050	<0.050	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC	0.01	<0.050	<0.050	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	<0.050	<0.050	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beta-BHC Delta-BHC		<0.050 0.027 J	<0.050 <0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	<0.10	<0.10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Endosulfan I		<0.050	<0.050	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
Endosulfan II		<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate		<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
Endrin	0	<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	5	<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	< 0.050	0.0044 J	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane	0.05	<0.050	<0.050	NA	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	<0.050	0.035 J	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	0.0083 J	<0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	<0.50	<0.50	NA	NA	NA	NA	NA	NA	INA
Detected Inorganics		10.000	-2 500	NIA.	NI A	NIA.	I NIA	NIA	I NIA	N/A
Aluminum	3	10,900 <5.00	<2,500 <100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	<5.00 13.1	<100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	1,000	171	25.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium	1,000	0.720	<25.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Cadmium	5	0.540	<50.0	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA
Calcium		845,000	595,000	NA	NA	NA	NA	NA	NA	NA
Chromium	50	17.0	<50.0	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics					· ·			l .		
Cobalt		8.00	<50.0	NA	NA	NA	NA	NA	NA	NA
Copper	200	65.8	25.6 B	NA	NA	NA	NA	NA	NA	NA
Cyanide	200	817	865 J	3,710	871	1,340	811 J	940 [920]	998	1,000
Cyanide, Available		13	569	<2	NA	NA	NA	NA	NA	42
Iron	300	18,800	<1,000	NA	NA	NA	NA	NA	NA	470
Lead	25	53.6	<50.0	NA	NA	NA	NA	NA	NA	NA
Magnesium		19,400	155,000	NA	NA	NA	NA	NA	NA	NA
Manganese	300	1,380	<75.0	NA	NA	NA	NA	NA	NA	6.10 B
Mercury Nickel	0.7 100	0.650 26.8	<0.200 <50.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium		20,000	11,400 EJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	10	8.40	<150 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	50	<1.00	<30.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA
Sodium		315,000	305,000	NA	NA	NA	NA	NA	NA	NA
Thallium		9.00	<200	NA	NA	NA	NA	NA	NA	NA
Vanadium		25.4	<30.0	NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	114	<250	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered										
Iron	300	606	193 B	NA	NA	NA	NA	NA	NA	NA
Manganese	300	<10.0	8.40 B	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous										
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA 0.400	NA	NA	NA	NA	NA	<2	8,300
BOD		NA COO	8,400	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 400
Carbon Dioxide by Headspace Carbon monoxide		<600 <400	<600 <400	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<100 NA
Carbon monoxide Carbonate, CaCO3		<400 NA	<400 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COD		322,000	78,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride	250,000	617,000	570,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
DOC Average Quads		32,600	15,000	NA NA	NA	NA	NA	NA	NA	NA
Hardness, Ca/CO3		NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane		280	26	NA	NA	NA	NA	NA	NA	<10
Nitrate + Nitrite (as N)		NA	NA	<160	NA	NA	NA	NA	NA	200
Nitrate Nitrogen	10,000	<100	840	NA	NA	NA	NA	NA	NA	<110
Nitrite Nitrogen	1,000	<100	<100	NA	NA	NA	NA	NA	NA	200
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA 0.40	NA	NA	NA	NA	NA	NA	NA	16 B
Oxygen		940	8,200	NA	NA	NA	NA	NA	NA	NA
pH Sulfate	250,000	NA 657,000	NA 1 600 000	NA 1.120.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA 621 000
Sulfate Sulfide	250,000	657,000 10,000	1,600,000 4,900	1,120,000 NA	NA NA	NA NA	NA NA	NA NA	NA NA	621,000
TOC Average Quads	50	34,500	16,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2,000 15,500
Total Dissolved Solids	1,000,000	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
TOTAL DISSUIVED SUILUS	1,000,000	INA	INA	INA	INA	INA	INA	INA	INA	INA

Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			M	V-12D				MW-12D2	MW-13S
Date Collected:	Values	11/02/00	03/26/03	01/27/06	05/10/06	08/16/06	11/14/06	02/26/13	03/26/03	02/06/02
Detected Volatile Organics	values	11/02/00	00/20/00	0.,2.,00	00/10/00	00/10/00		02/20/10	00/20/00	02,00,02
1,1,1-Trichloroethane	5	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
1,1,2,2-Tetrachloroethane	5	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
1,1,2-Trichloroethane	1	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
1,1-Dichloroethane	5	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
2-Butanone		18 J	<50	NA	NA	NA	NA	NA	<10	<50
2-Hexanone	50	<50	<50	NA	NA	NA	NA	NA	<10	<50
4-Methyl-2-pentanone		<50	<50	NA	NA	NA	NA	NA	<10	<50
Acetone	50	78	28 J	NA	NA	NA	NA	NA	<10	<50
Benzene	1	490	530	530	610	660	630	330	<5.0	<50
Bromodichloromethane	50	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Bromoform	50	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Bromomethane	5	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Carbon Disulfide		<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Chlorobenzene	5	<50	<25	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0	<50
Chloroform	7	<50	<25	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0	<50
Chloromethane Dibromochloromethane	50	<50 <50	<25 <25	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0	<50 <50
Ethylbenzene	5	<50 <50	7.0 J	<8.0	<5.0	<5.0	<5.0	<1.0	<5.0 <5.0	<50 <50
Methylene Chloride	5	17 J	<5.0	NA	NA	NA	NA	NA	<5.0 <5.0	<50 J
Styrene	5	<50	<25	NA NA	NA NA	NA	NA NA	NA NA	<5.0	<50
Tetrachloroethene	5	<50	<25	NA NA	NA.	NA NA	NA.	NA.	<5.0	<50
Toluene	5	<50	13 J	<2.4	<1.5	<1.5	<1.5	0.63 J	<5.0	<50
Trichloroethene	5	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Vinyl Chloride	2	<50	<25	NA	NA	NA	NA	NA	<5.0	<50
Xylenes (total)	5	<50	49	<8.0	<5.0	<5.0	<5.0	0.80 J	<5.0	<50
Total BTEX		490	600 J	530	610	660	630	340 J	<5.0	<50
Total VOCs		600 J	630 J	530	610	660	630	340 J	<10	<50
Detected Semivolatile Organ	ics									
2,4-Dimethylphenol	50	17	81	NA	NA	NA	NA	NA	<11	<9.0
2,4-Dinitrophenol	10	<25	<54	NA	NA	NA	NA	NA	<53	<23
2-Chloronaphthalene	10	<10	<11	NA	NA	NA	NA	NA	<11	<9.0
2-Methylnaphthalene		<10	<11	<0.60	<0.60	<0.60	<0.60	NA	<11	2.0 J
2-Methylphenol		<10	25	NA	NA	NA	NA	NA	<11	<9.0
2-Nitrophenol		<10	<11	NA	NA	NA	NA	NA	<11	<9.0
3,3'-Dichlorobenzidine	5	<10	<22	NA	NA	NA	NA	NA	<21	<9.0
4-Methylphenol		<10	54	NA	NA	NA	NA	NA	<11	<9.0
4-Nitroaniline	5	<25	<22	NA	NA	NA	NA	NA	<21	<23
Acenaphthene	20	<10	<11	<0.80	<0.80	<0.80	<0.80	NA	<11	4.0 J
Acenaphthylene	50	<10	<11	<0.80	<0.80	<0.80	<0.80	NA NA	<11	<9.0
Anthracene Benzo(a)anthracene	0.002	<10 <10	<11 <11	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <0.80	NA NA	<11 <11	1.0 J <9.0
Benzo(a)pyrene	0.002	<10	<11	<1.0	<1.0	<1.0	<0.50	NA NA	<11	<9.0
Benzo(b)fluoranthene	0.002	<10	<11	<2.0	<2.0	<2.0	<1.0	NA NA	<11	<9.0
Benzo(g,h,i)perylene	0.002	<10	<11	<1.0	<1.0	<1.0	<0.30	NA NA	<11	<9.0
Benzo(k)fluoranthene	0.002	<10	<11	<0.90	<0.90	<0.90	<0.90	NA NA	<11	<9.0
bis(2-Ethylhexyl)phthalate	5	0.20 J	<11	NA	NA	NA	NA	NA.	<11	<9.0
Butylbenzylphthalate	50	<10	<11	NA	NA	NA	NA	NA NA	<11	0.30 J
Detected Semivolatile Organ				1						
Carbazole		<10	<11	NA	NA	NA	NA	NA	<11	<9.0
Chrysene	0.002	<10	<11	<1.0	<1.0	<1.0	<1.0	NA	<11	<9.0
Dibenzo(a,h)anthracene		<10	<11	<1.0	<1.0	<1.0	<0.20 J	NA	<11	<9.0
Dibenzofuran		<10	<11	NA	NA	NA	NA	NA	<11	0.30 J
Diethylphthalate	50	<10	<11	NA	NA	NA	NA	NA	<11	<9.0
Dimethylphthalate	50	<10	<11	NA	NA	NA	NA	NA	<11	0.70 J
Di-n-Butylphthalate	50	0.10 J	<11	NA	NA	NA	NA	NA	<11	<9.0
Di-n-Octylphthalate	50	<10	<11	NA	NA	NA	NA	NA	<11	<9.0
Fluoranthene	50	<10	<11	<1.0	<1.0	<1.0	< 0.90	NA	<11	0.70 J
Fluorene	50	<10	<11	<0.80	<0.80	<0.80	<0.70	NA	<11	2.0 J
Indeno(1,2,3-cd)pyrene	0.002	<10	<11	<1.0	<1.0	<1.0	<0.30	NA	<11	<9.0
Isophorone	50	<10	<11	NA	NA	NA	NA	NA	<11	<9.0
Naphthalene	10	0.60 J	4.0 J	0.90 J	<0.70	<0.70	<0.40	6.3	<11	<9.0
Phenanthrene	50	<10	<11	<0.70	<0.70	<0.70	<0.70	NA	<11	<9.0
Phenol	1 50	0.60 J <10	<11 <11	NA -1.0	NA <1.0	NA <1.0	NA <1.0	NA NA	<11 <11	<9.0 0.70 J
Pyrene Total PAHs	50	<10 0.60 J	<11 4.0 J	<1.0 0.90 J	<1.0 <2.0	<1.0 <2.0	<1.0	NA NA	<11 <11	0.70 J 10 J
Total SVOCs		19 J	4.0 J	0.90 J	<2.0	<2.0	<1.0	NA NA	<53	10 J
10101 3 7 0 0 3		197	100 J	0.90 J	~ Z.U	<z.u< td=""><td>< 1.U</td><td>INA</td><td><00</td><td>1 Z J</td></z.u<>	< 1.U	INA	<00	1 Z J

				·						
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MV	V-12D				MW-12D2	MW-13S
Date Collected:	Values	11/02/00	03/26/03	01/27/06	05/10/06	08/16/06	11/14/06	02/26/13	03/26/03	02/06/02
Detected Pesticides						•				•
4,4'-DDD	0.3	<0.10	<0.11	NA	NA	NA	NA	NA	<0.10	<0.10
4,4'-DDE	0.2	<0.10	<0.10	NA	NA	NA	NA	NA	<0.10	<0.10
4,4'-DDT Aldrin	0.2	0.0081 J <0.050	<0.10 J <0.050	NA NA	NA NA	NA NA	NA NA	NA NA	<0.10 J <0.050	<0.10 J <0.50
Alpha-BHC	0.01	<0.050	<0.050	NA NA	NA NA	NA NA	NA NA	NA NA	<0.050	<0.50 J
Alpha-Chlordane	0.05	<0.050	<0.050	NA NA	NA	NA NA	NA	NA NA	<0.050	<0.050
Beta-BHC		< 0.050	< 0.050	NA	NA	NA	NA	NA	< 0.050	< 0.50
Delta-BHC		< 0.050	<0.050	NA	NA	NA	NA	NA	< 0.050	<0.50 J
Dieldrin	0.004	<0.10	<0.10	NA	NA	NA NA	NA	NA	<0.10	<0.10
Endosulfan I Endosulfan II		<0.050 <0.10	<0.050 <0.10	NA NA	NA NA	NA NA	NA NA	NA NA	<0.050 <0.10	<0.50 <0.10
Endosulfan Sulfate		<0.10	<0.10	NA	NA	NA NA	NA	NA NA	<0.10	<0.10
Endrin	0	<0.10	<0.10	NA	NA	NA	NA	NA	<0.10	<0.10 J
Endrin Aldehyde	5	<0.10	<0.10	NA	NA	NA	NA	NA	<0.10	<0.10
Gamma-BHC (Lindane)	0.05	< 0.050	<0.050	NA	NA	NA	NA	NA	< 0.050	< 0.50
Gamma-Chlordane	0.05	<0.050	<0.050	NA	NA	NA	NA	NA	<0.050	<0.050
Heptachlor	0.04	<0.050	0.014 J	NA NA	NA NA	NA NA	NA NA	NA NA	<0.050	<0.50 J
Heptachlor Epoxide Methoxychlor	0.03 35	<0.050 <0.50	<0.050 <0.50	NA NA	NA NA	NA NA	NA NA	NA NA	<0.050 <0.50	<0.50 <0.50 J
Detected Inorganics	- 55	40.00	70.00	14/7	нл	1471	1471	INA	\0.50	40.00 0
Aluminum		1,050	<500	NA	NA	NA	NA	NA	<2,500	128 B
Antimony	3	<25.0	<20.0	NA	NA	NA	NA	NA	<100	<4.20
Arsenic	25	<12.5	<40.0	NA	NA	NA	NA	NA	<200	<3.40
Barium	1,000	1,630	158	NA	NA	NA	NA	NA	118	295 EJ
Beryllium		<2.50	<5.00	NA	NA	NA	NA	NA	<25.0	3.90 JB
Cadmium	5	<2.50	<10.0	NA NA	NA NA	NA NA	NA	NA NA	<50.0	3.60 JB
Calcium Chromium	50	95,400 <5.00	70,600 <10.0	NA NA	NA NA	NA NA	NA NA	NA NA	1,220,000 <50.0	286,000 EJ 2.00 B
Detected Inorganics	30	₹3.00	V10.0	IVA	IVA	IVA	INA	IVA	₹30.0	2.00 B
Cobalt		<5.00	<10.0	NA	NA	NA	NA	NA	<50.0	0.800 B
Copper	200	8.10	<10.0	NA	NA.	NA NA	NA	NA	12.6 B	2.00 B
Cyanide	200	187	72.6 J	91.6	53.2	62.4	<1.30 J	120	<10.0 J	<0.0100
Cyanide, Available		22	508	<2	NA	NA	NA	12	79	<2
Iron	300	3,160	272	NA	NA	NA	NA	273	17,400	57.5 B
Lead	25	<10.0	<10.0	NA	NA	NA NA	NA	NA	<50.0	<1.80
Magnesium Manganese	300	8,170 103	4,160 35.0	NA NA	NA NA	NA NA	NA NA	NA 55.3	325,000 250	19,500 EJ 134 EJ
Mercury	0.7	<0.100	<0.200	NA NA	NA NA	NA NA	NA NA	NA	<0.200	<0.100
Nickel	100	<7.50	<10.0	NA NA	NA.	NA NA	NA NA	NA NA	<50.0	1.60 B
Potassium		47,500	46,900 EJ	NA	NA	NA	NA	NA	497,000 EJ	30,900 EJ
Selenium	10	<25.0	<30.0 J	NA	NA	NA	NA	NA	<150 J	<5.50
Silver	50	<5.00	<6.00	NA	NA	NA	NA	NA	<30.0	<0.800
Sodium		153,000	652,000	NA	NA	NA NA	NA	NA	608,000	4,530,000 EJ
Thallium Vanadium		<30.0 6.70	<40.0 4.70 B	NA NA	NA NA	NA NA	NA NA	NA NA	<200 <30.0	<4.50 <0.600 J
Zinc	2,000	<25.0	<50.0	NA	NA	NA NA	NA	NA NA	<250	12.0 JB
Detected Inorganics-Filtered										
Iron	300	1,320	97.4 B	NA	NA	NA	NA	NA	9,830	<16.3
Manganese	300	72.6	26.3	NA	NA	NA	NA	NA	144	97.3
Detected Miscellaneous										
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA 10.000	NA 0.000.0000000000000000000000000000000	NA	NA	NA	NA	91,300	NA 200 P	NA 22.222
BOD Carbon Dioxide by Headspace		18,600 24,400	9,200.00000000001 9,000	NA NA	NA NA	NA NA	NA NA	NA 4,360	990 B 130,000	60,000 26,000
Carbon monoxide		<400	9,000 <400	NA NA	NA NA	NA NA	NA NA	4,360 NA	<400	<400
Carbonate, CaCO3		NA NA	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA NA
COD		307,000	115,000	NA	NA	NA	NA	NA	122,000	NA
Chloride	250,000	4,880,000	2,800,000	NA	NA	NA	NA	NA	95,000,000	7,040,000
DOC Average Quads		41,800	23,000	NA	NA	NA	NA	NA	28,000	2,900
Hardness, Ca/CO3		NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA
Iron, Ferric		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferrous Methane		NA 26,760	20,000	NA NA	NA NA	NA NA	NA NA	NA 4,320	NA 220	4,000
Nitrate + Nitrite (as N)		NA	NA	<160	NA	NA NA	NA NA	450	NA	4,000 NA
Nitrate Nitrogen	10,000	<100	<1,000	NA	NA	NA	NA	450	<25,000	NA NA
Nitrite Nitrogen	1,000	<100	<1,000	NA	NA	NA	NA	4.2 B	<25,000	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA 1 000	NA	NA	NA	NA	53 B	NA 0.000	NA 1.100
Oxygen		630 NA	4,800	NA NA	NA NA	NA NA	NA NA	NA NA	3,800	1,100
pH Sulfate	250,000	NA 1,430	NA 20,000	NA 32,100	NA NA	NA NA	NA NA	NA <5,000	NA 1,300,000	NA 162.000
Sulfide	250,000	<1,000	6,200	NA	NA NA	NA NA	NA NA	1,500 B	600 B	39,900
TOC Average Quads		43,800	28,000	NA	NA	NA	NA	30,500	31,000	4,000
Total Dissolved Solids	1,000,000	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA
									•	

		STRAC	USE, NEW YOR	.n.				
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance	MW-13D	MW-14S	MW-14D	MW-15S	MW-15D	MW-16S	MW-16D
Date Collected:	Values	02/06/02	02/07/02	02/07/02	02/07/02	02/07/02	10/31/00	10/31/00
Detected Volatile Organics								
1,1,1-Trichloroethane	5	<10 [<10]	<50	<10	<50	<50	NA	NA
1,1,2,2-Tetrachloroethane	5	<10 [<10]	<50	<10	<50	<50	NA	NA
1,1,2-Trichloroethane	1	<10 [<10]	<50	<10	<50	<50	NA	NA
1,1-Dichloroethane	5	<10 [<10]	<50	<10	<50	<50	NA	NA
2-Butanone		75 J [54]	<50 J	180 J	140 J	160 J	NA	NA
2-Hexanone	50	<10 J [<10]	<50 J	<10 J	<50 J	<50 J	NA	NA
4-Methyl-2-pentanone		<10 [2.0 J]	<50 J	8.0 J	<50 J	<50 J	NA	NA
Acetone	50	290 D [140 D]	<50	590 D	730	770	NA	NA
Benzene	1	<10 [<10]	<50	1.0 J	<50	<50	NA	NA
Bromodichloromethane	50	<10 [<10]	<50	<10	<50	<50	NA	NA
Bromoform	50	<10 [<10]	<50	<10	<50	<50	NA	NA
Bromomethane	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Carbon Disulfide		3.0 J [2.0 J]	<50	3.0 J	5.0 J	5.0 J	NA	NA
Chlorobenzene	5	<2.0 [<10]	<50	<10	<50	<50	NA	NA
Chloroform	7	<10 [<10]	<50	<10	<50	<50	NA	NA
Chloromethane		<10 J [<10]	<50 J	<10 J	<50 J	<50 J	NA	NA
Dibromochloromethane	50	<10 [<10]	<50	<10	<50	<50	NA	NA
Ethylbenzene	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Methylene Chloride	5	<10 J [<10 J]	<50 J	<10	<50 J	<50 J	NA	NA
Styrene	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Tetrachloroethene	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Toluene	5	<1.0 [<10]	<50	<10	<50	<50	NA	NA
Trichloroethene	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Vinyl Chloride	2	<10 [<10]	<50	<10	<50	<50	NA	NA
Xylenes (total)	5	<10 [<10]	<50	<10	<50	<50	NA	NA
Total BTEX		<10 [<10]	<50	1.0 J	<50	<50	NA	NA
Total VOCs		370 J [200 J]	<50	780 J	880 J	940 J	NA	NA
Detected Semivolatile Organ	nics			1		1	· ·	
2,4-Dimethylphenol	50	<10 [<9.0]	<11	<11	<11	<11	NA	NA
2,4-Dinitrophenol	10	<23 [23 J]	<28	<27 J	<27	<27	NA	NA
2-Chloronaphthalene	10	<10 [<9.0]	<11	<11	<11	<11	NA	NA
2-Methylnaphthalene		0.70 J [1.0 J]	0.30 J	<11	0.30 J	<11	NA NA	NA NA
2-Methylphenol		<10 [<9.0]	<11	<11	0.60 J	<11	NA	NA
2-Nitrophenol		<10 [<9.0]	<11	<11	<11	<11	NA	NA
3,3'-Dichlorobenzidine	5	<10 [<9.0]	<11	<11	<11	<11	NA	NA
4-Methylphenol		7.0 J [5.0 J]	<11	160 D	7.0 J	350 EJ	NA	NA
4-Nitroaniline	5	<24 [<23]	<28	<27	<27	<27	NA	NA
Acenaphthene	20	0.50 J [<9.0]	2.0 J	0.40 J	2.0 J	<11	NA NA	NA NA
Acenaphthylene		<10 [<9.0]	<11	<11	0.30 J	<11	NA	NA
Anthracene	50	<10 [<9.0]	1.0 J	<11	1.0 J	<11	NA NA	NA NA
Benzo(a)anthracene	0.002	<10 [<9.0]	<11	<11	<11	<11	NA NA	NA NA
Benzo(a)pyrene	0	<10 [<9.0]	<11	<11	0.40 J	<11	NA NA	NA
Benzo(b)fluoranthene	0.002	<10 [<9.0]	<11	<11	0.60 J	<11	NA NA	NA NA
Benzo(g,h,i)perylene		<10 [<9.0]	<11	<11 J	<11	<11	NA NA	NA
Benzo(k)fluoranthene	0.002	<10 [<9.0]	<11	<11 J	<11	<11	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	5	<10 [<3.0]	<11	<1.0	<11	<11	NA NA	NA NA
Butylbenzylphthalate	50	<10 [<9.0]	<11	<11	<11	<11	NA NA	NA NA
Detected Semivolatile Organ		(10 [40.0]	NII.	×111	VIII	VIII	14/1	
Carbazole	lics	<10 [<9.0]	0.50 J	<11	0.80 J	<11	NA	NA
	0.002				0.60 J		NA NA	NA NA
Chrysene Dibenzo(a,h)anthracene	0.002	<10 [<9.0] <10 [<9.0]	<11 <11	<11 <11	<11	<11 <11	NA NA	NA NA
Dibenzofuran		<10 [<9.0]	0.80 J	<11	1.0 J	<11	NA NA	NA NA
Diethylphthalate	50	<10 [<9.0]	<11	<0.50	<11	<11		
Dimethylphthalate	50	0.30 J [<9.0]	<11	<11	<11	<11	NA NA	NA NA
Di-n-Butylphthalate	50	<10 [<9.0]	<11	<0.40	<11	<11	NA NA	NA NA
Di-n-Octylphthalate	50	<10 [<0.50]	<11	<11	0.40 J	<11	NA NA	NA NA
Fluoranthene	50	<10 [<9.0]	0.90 J	<11	2.0 J	<11	NA NA	NA NA
Fluorene	50	<10 [0.30 J]	1.0 J	<11	2.0 J	<11	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<10 [<9.0]	<11	<11	<11	<11	NA	NA
Isophorone	50	<10 [<9.0]	<11	<11	<11	<11	NA	NA
Naphthalene	10	<10 [<9.0]	4.0 J	<11	0.70 J	0.40 J	NA	NA
Phenanthrene	50	0.40 J [0.50 J]	<11	<0.60	<11	<11	NA	NA
Phenol	1	0.60 J [<9.0]	<11	19	120 EJ	25	NA	NA
Pyrene	50	<10 [<9.0]	0.70 J	<11	3.0 J	<11	NA	NA
Total PAHs		1.6 J [1.8 J]	9.9 J	0.40 J	13 J	0.40 J	NA	NA
Total SVOCs		9.5 J [30 J]	11 J	180 J	140 J	380 J	NA	NA

		0.110.00	JSE, NEW YOR	•				
	NYSDEC TOGS 1.1.1							
Location ID: Date Collected:	Water Guidance	MW-13D 02/06/02	MW-14S 02/07/02	MW-14D 02/07/02	MW-15S 02/07/02	MW-15D 02/07/02	MW-16S 10/31/00	MW-16D 10/31/00
Detected Pesticides	Values	02/06/02	02/07/02	02/07/02	02/07/02	02/01/02	10/31/00	10/31/00
4,4'-DDD	0.3	<0.10 [<0.11]	<0.11	<0.10	<0.10	<0.11	NA	NA
4.4'-DDE	0.2	<0.10 [<0.11]	<0.11	<0.10	<0.10	<0.11	NA	NA
4,4'-DDT	0.2	<0.10 J [<0.11 J]	<0.11 J	<0.10 J	<0.10 J	<0.11 J	NA	NA
Aldrin	0	<0.052 [<0.054]	< 0.054	<0.052	< 0.052	< 0.053	NA	NA
Alpha-BHC	0.01	<0.052 J [<0.054 J]	<0.054 J	<0.052 J	<0.052 J	<0.053 J	NA	NA
Alpha-Chlordane	0.05	<0.052 [<0.054]	< 0.054	< 0.052	<0.10	<0.11	NA	NA
Beta-BHC		<0.052 [<0.054]	<0.054	<0.052	<0.052	<0.053	NA	NA
Delta-BHC	0.004	<0.052 J [<0.054 J]	<0.054 J	<0.052 J	<0.052 J	<0.053 J	NA NA	NA
Dieldrin Endosulfan I	0.004	<0.10 [<0.11] <0.052 [<0.054]	<0.11 <0.054	<0.10 <0.052	<0.10 <0.052	<0.11 <0.053	NA NA	NA NA
Endosulfan II		<0.032 [<0.034]	<0.11	<0.10	<0.032	<0.03	NA NA	NA NA
Endosulfan Sulfate		<0.10 [<0.11]	<0.11	<0.10	<0.10	<0.11	NA	NA
Endrin	0	<0.10 J [<0.11 J]	<0.11 J	<0.10 J	<0.10 J	<0.11 J	NA	NA
Endrin Aldehyde	5	<0.10 [<0.11]	<0.11	<0.10	<0.10	<0.11	NA	NA
Gamma-BHC (Lindane)	0.05	<0.052 [<0.054]	< 0.054	< 0.052	< 0.052	< 0.053	NA	NA
Gamma-Chlordane	0.05	<0.052 [<0.054]	<0.054	<0.052	<0.10	<0.11	NA	NA
Heptachlor	0.04	<0.052 J [<0.054 J]	<0.054 J	<0.052 J	<0.052 J	<0.053 J	NA	NA
Heptachlor Epoxide Methoxychlor	0.03 35	<0.052 [<0.054] <0.52 J [<0.54 J]	<0.054 <0.54 J	<0.052 <0.52 J	<0.052 <0.52 J	<0.053 <0.53 J	NA NA	NA NA
Detected Inorganics	33	<0.52 5 [<0.54 5]	₹0.54.5	<0.52 J	<0.52 J	₹0.55 5	INA	INA
Aluminum		750 [750]	290	295	484	1,250	NA	NA
Antimony	3	<4.20 [<4.20]	<4.20	4.90 B	<4.20	<4.20	NA NA	NA NA
Arsenic	25	13.4 [13.4]	<3.40	<3.40	<3.40	37.3	NA NA	NA NA
Barium	1,000	1,670 EJ [1,670 EJ]	326 EJ	4,440 EJ	1.20 BEJ	13,100 EJ	NA	NA
Beryllium		9.40 J [9.40 J]	<0.300 J	4.20 JB	<0.300 J	<0.300 J	NA	NA
Cadmium	5	<0.400 J [<0.400 J]	<0.400 J	<0.400 J	<0.400 J	8.70 J	NA	NA
Calcium		1,630,000 EJ [1,630,000 EJ]	197,000 EJ	1,090,000 EJ	340,000 EJ	2,180,000 EJ	NA	NA
Chromium	50	3.50 B [3.50 B]	28.6	2.00 B	<0.800	48.2	NA	NA
Detected Inorganics	1	. = =						
Cobalt		<0.700 [<0.700]	1.30 B	<0.700	<0.700	<0.700	NA NA	NA
Copper Cyanide	200 200	1.60 B [1.60 B] <0.0100 J [<0.0100]	4.10 B <0.0100	1.00 B <0.0100	4.50 B <0.0100	3.10 B <0.0100	NA NA	NA NA
Cyanide, Available	200	<2 [<2]	15	6	35	15	NA NA	NA NA
Iron	300	1,230 [1,230]	743	637	550	3,160	NA	NA NA
Lead	25	<1.80 [<1.80]	11.8	<1.80	7.20	38.6	NA	NA
Magnesium		148,000 EJ [148,000 EJ]	15,000 EJ	321,000 EJ	893 BEJ	685,000 EJ	NA	NA
Manganese	300	391 EJ [391 EJ]	182 EJ	228 EJ	9.70 BEJ	258 EJ	NA	NA
Mercury	0.7	<0.100 [<0.100]	<0.100	<0.100	<0.100	<0.100	NA	NA
Nickel	100	2.10 B [2.10 B]	15.2 B	5.40 B	2.30 B	<1.00	NA	NA
Potassium	 10	126,000 EJ [126,000 EJ]	31,000 EJ	28,500 EJ	18,200 EJ	34,900 EJ	NA NA	NA
Selenium Silver	10 50	<5.50 [<5.50] <0.800 [<0.800]	<5.50 <0.800	<5.50 1.40 B	<5.50 <0.800	<5.50 <0.800	NA NA	NA NA
Sodium		40,200,000 EJ [40,200,000 EJ]	3,950,000 EJ		652,000 EJ	27,800,000 EJ	NA NA	NA NA
Thallium		<4.50 [<4.50]	14.0	61.1	<4.50	40.0	NA	NA
Vanadium		22.3 JB [22.3 JB]	3.90 JB	8.50 JB	0.700 JB	12.2 JB	NA	NA
Zinc	2,000	29.7 J [29.7 J]	16.5 JB	3.10 JB	9.20 JB	52.8 J	NA	NA
Detected Inorganics-Filtered			•				•	
Iron	300	<16.3 [<16.3]	34.6 B	<16.3	50.3 B	185	NA	NA
Manganese	300	415 [415]	128	194	0.200 B	237	NA	NA
Detected Miscellaneous								
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA NA	NA	NA	NA	NA	NA	NA
BOD		81,000 [105,000]	38,800	169,000	12,700	456,000	<2,000	33,600
Carbon Dioxide by Headspace Carbon monoxide		210,000 [200,000] <400 [<400]	15,000 <400	350,000 <400	<600 <400	440,000 <400	<600 <400	<600 <400
Carbonate, CaCO3		<400 [<400] NA	NA	NA	NA	NA	NA	NA
COD		NA NA	NA NA	NA NA	NA NA	NA NA	<10,000	97,600
Chloride	250,000	65,800,000 [67,000,000]	5,770,000	39,700,000	886,000	47,200,000	9,800	119,000
DOC Average Quads		7,200 [7,000]	10,400	11,100	14,900	34,500	3,180	25,300
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA To	NA
Methane		10,000 [9,300]	10,000	10,000	2,200	9,700.00000000001	<70	1,050
Nitrate + Nitrite (as N)	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA F FFO	NA -100
Nitrate Nitrogen Nitrite Nitrogen	10,000 1,000	NA NA	NA NA	NA NA	NA NA	NA NA	5,550 10,700	<100 <100
Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	10,700 NA	<100 NA
Orthophosphate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxygen		910 [540]	1,100	550	1,500	440	5,890	<600
pH		NA	NA NA	NA	NA	NA	NA	NA
Sulfate	250,000	506,000 [508,000]	130,000	5,900	132,000	321,000	316,000	131,000
Sulfide	50	48,900 [56,900]	29,500	39,300	12,900	40,900	<1,000	12,000
TOC Average Quads		7,500 J [6,800]	10,600	18,400	18,000	47,100	<1,000	25,600
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1												
Location ID:	Water Guidance			MW-18S					MW-18D				-19S
Date Collected: Detected Volatile Organics	Values	03/27/03	01/27/06	05/10/06	08/15/06	11/15/06	03/27/03	02/07/06	05/15/06	08/22/06	11/16/06	03/27/03	02/03/06
1,1,1-Trichloroethane	5	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
1,1,2,2-Tetrachloroethane	5	<5.0	NA NA	NA NA	NA NA	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA	<5.0	NA NA
1,1,2-Trichloroethane	1	<5.0	NA.	NA.	NA.	NA.	<5.0	NA NA	NA NA	NA NA	NA.	<5.0	NA NA
1,1-Dichloroethane	5	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
2-Butanone		14	NA	NA	NA	NA	<10	NA	NA	NA	NA	<10	NA
2-Hexanone	50	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA	<10	NA
4-Methyl-2-pentanone		<10	NA	NA	NA	NA	3.0 J	NA	NA	NA	NA	<10	NA
Acetone	50 1	<5.0	NA 1.0 J	NA 5.6	NA 5.1	NA 5.4	13	NA 67	NA 74	NA 69 [47]	NA 74	18 14	NA 20
Benzene Bromodichloromethane	50	3.0 J <5.0	NA	NA	NA	NA	<50 <5.0	NA	NA	NA	NA	<5.0	NA
Bromoform	50	<5.0	NA NA	NA	NA	NA	<5.0	NA NA	NA NA	NA NA	NA	<5.0	NA NA
Bromomethane	5	<5.0	NA	NA NA	NA	NA NA	<5.0	NA	NA	NA NA	NA	<5.0	NA NA
Carbon Disulfide		<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Chlorobenzene	5	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Chloroform	7	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Chloromethane		<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Dibromochloromethane	50	<5.0	NA 4.0	NA 2.0.1	NA 0.0.1	NA 2.0.1	<5.0	NA 4.0	NA 4.0	NA 4 0 [4 0]	NA 4.0	<5.0	NA 4.0.1
Ethylbenzene Methylene Chloride	5 5	0.80 J <5.0	<1.0 NA	2.8 J NA	2.3 J NA	3.2 J NA	1.0 J <5.0	<1.0 NA	<1.0 NA	<1.0 [<1.0] NA	<1.0 NA	4.0 J <5.0	4.2 J NA
Styrene	5	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	2.0 J	NA NA
Tetrachloroethene	5	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	<5.0	NA NA
Toluene	5	4.0 J	0.71 J	8.2	7.3	9.0	3.0 J	1.7 J	0.86 J	0.85 J [0.50 J]	1.0 J	20	20
Trichloroethene	5	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Vinyl Chloride	2	<5.0	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	<5.0	NA
Xylenes (total)	5	7.0	<1.0	21	17	22	<5.0	5.1	2.3 J	1.4 J [<1.0]	4.0 J	14	13
Total BTEX		15 J	1.7 J	38 J	32 J	40 J	4.0 J	74 J	77 J	71 J [48 J]	79 J	52 J	57 J
Total VOCs		29 J	1.7 J	38 J	32 J	40 J	20 J	74 J	77 J	71 J [48 J]	79 J	72 J	57 J
Detected Semivolatile Organ		701		L			400			T 110		10	
2,4-Dimethylphenol	50 10	7.0 J <220	NA NA	NA NA	NA NA	NA NA	130 <100	NA NA	NA NA	NA NA	NA NA	<10 <50	NA NA
2,4-Dinitrophenol 2-Chloronaphthalene	10	<43	NA NA	NA NA	NA NA	NA NA	<20	NA NA	NA NA	NA NA	NA NA	<50 <10	NA NA
2-Methylnaphthalene		<43	5.0 J	3.0 J	4.0 J	5.0 J	<20	<0.60	<0.60	<0.60 [<0.70]	<0.70	1.0 J	1.0 J
2-Methylphenol		8.0 J	NA	NA	NA	NA NA	4.0 J	NA	NA	NA	NA	<10	NA NA
2-Nitrophenol		<43	NA	NA	NA	NA	<20	NA	NA	NA	NA	<10	NA
3,3'-Dichlorobenzidine	5	<87	NA	NA	NA	NA	<40	NA	NA	NA	NA	<20	NA
4-Methylphenol		18 J	NA	NA	NA	NA	4.0 J	NA	NA	NA	NA	1.0 J	NA
4-Nitroaniline	5	<87	NA 0.00 l	NA 1.0.1	NA	NA 0.00 I	<40	NA 0.00	NA	NA	NA 0.00	<20	NA
Acenaphthene	20	<43 3.0 J	0.80 J	1.0 J <0.80	<4.0 <4.0	0.90 J <0.80	<20 <20	<0.80	<0.80 <0.80	<0.80 [<0.90]	<0.90	<10 <10	<0.80 <0.80
Acenaphthylene Anthracene	50	<43	<0.80 <1.0	<1.0	<4.0 <5.0	<1.0	<20	<0.80 <1.0	<1.0	<0.80 [<0.80] <1.0 [<1.0]	<0.80 <1.0	<10	<1.0
Benzo(a)anthracene	0.002	<43	<1.0	<1.0	<6.0	<0.80	<20	<1.0	<1.0	<1.0 [<1.0]	<0.80	<10	<1.0
Benzo(a)pyrene	0	<43	<1.0	<1.0	<5.0	<0.50	<20	<1.0	<1.0	<1.0 [<1.0]	<0.50	<10	<1.0
Benzo(b)fluoranthene	0.002	<43	<2.0	<2.0	<8.0	<1.0	<20	<2.0	<2.0	<2.0 [<2.0]	<1.0	<10	<2.0
Benzo(g,h,i)perylene		<43	<1.0	<1.0	<5.0	< 0.30	<20	<1.0	<1.0	<1.0 [<1.0]	<0.30	<10	<1.0
Benzo(k)fluoranthene	0.002	<43	<0.90	<0.90	<5.0	<0.90	<20	<0.90	<0.90	<0.90 [<1.0]	<1.0	<10	<0.90
bis(2-Ethylhexyl)phthalate	5	<43	NA NA	NA NA	NA NA	NA NA	<20	NA NA	NA NA	NA NA	NA NA	<10	NA NA
Butylbenzylphthalate	50	<43	NA	NA	NA	NA	<20	NA	NA	NA	NA	<10	NA
Detected Semivolatile Organ Carbazole	ics	3.0 J	NA	NA	NA	NA	<20	NA	NA	NA	NA	0.50 J	NA
Carbazole Chrysene	0.002	<43	<1.0	<1.0	<5.0	<1.0	<20	<1.0	<1.0	<1.0 [<1.0]	<1.0	<10	<1.0
Dibenzo(a,h)anthracene	0.002	<43	<1.0	<1.0	<7.0	<0.20	<20	<1.0	<1.0	<1.0 [<1.0]	<0.30	<10	<1.0
Dibenzofuran		3.0 J	NA	NA	NA	NA	<20	NA	NA	NA NA	NA	<10	NA
Diethylphthalate	50	<43	NA	NA	NA	NA	<20	NA	NA	NA	NA	<10	NA
Dimethylphthalate	50	<43	NA	NA	NA	NA	<20	NA	NA	NA	NA	<10	NA
Di-n-Butylphthalate	50	<43	NA	NA	NA	NA	<20	NA	NA	NA	NA	<10	NA
Di-n-Octylphthalate	50	<43	NA 1.0	NA 1.0	NA 5.0	NA 0.00	<20	NA 1.0	NA 4.0	NA 1 0 [1 0]	NA 1.0	<10	NA 4.0
Fluoranthene	50	<43 2.0 J	<1.0 2.0 J	<1.0	<5.0	<0.90 2.0 J	<20	<1.0	<1.0	<1.0 [<1.0]	<1.0	<10	<1.0
Fluorene Indeno(1,2,3-cd)pyrene	50 0.002	2.0 J <43	2.0 J <1.0	2.0 J <1.0	<4.0 <6.0	<0.30	<20 <20	<0.80 <1.0	<0.80 <1.0	<0.80 [<0.80] <1.0 [<1.0]	<0.80 <0.30	<10 <10	<0.80 <1.0
Isophorone	50	<43 <43	<1.0 NA	NA	NA	<0.30 NA	<20	<1.0 NA	<1.0 NA	NA	<0.30 NA	<10	×1.0
Naphthalene	10	36	40	45	45 J	45	7.0 J	<0.70	<0.70	<0.70 [<0.70]	<0.50	13	12
Phenanthrene	50	7.0 J	<0.70	<0.70	<3.0	<0.70	<20	<0.70	<0.70	<0.70 [<0.70]	<0.80	<10	<0.70
Phenol	1	290	NA	NA	NA	NA	3.0 J	NA	NA	NA	NA	4.0 J	NA
Pyrene	50	<43	<1.0	<1.0	<5.0	<1.0	<20	<1.0	<1.0	<1.0 [<1.0]	<1.0	<10	<1.0
Total PAHs		48 J	48 J	51 J	49 J	53 J	7.0 J	<2.0	<2.0	<2.0 [<2.0]	<1.0	14 J	13 J
Total SVOCs		380 J	48 J	51 J	49 J	53 J	150 J	<2.0	<2.0	<2.0 [<2.0]	<1.0	20 J	13 J

Location December Value Ox2795 Ox2795							SE, NEW TOP							
Company Comp		NYSDEC TOGS 1.1.1			MIN 100					MW 40D			BANA	100
December December			03/27/03	01/27/06		08/15/06	11/15/06	03/27/03	02/07/06		08/22/06	11/16/06		
4.4 2000		Vulues	00.2.700	0.1121100	53,75,55				02,01,00		55/22/55		53,21,55	52,55,55
A. D. D. D. D. D. D. D.	4,4'-DDD	0.3	<0.10	NA	NA	NA	NA	<0.16	NA	NA	NA	NA	<0.17	NA
Algorithm														
All														
April														
Description														
Design	Beta-BHC													
CROSSIGNED														
Existed														
Crossouring Surface														
Embers														
Gamma-Efficients 0.055	Endrin													
Garrona Control Cont	Endrin Aldehyde	5		NA	NA	NA	NA	<0.11	NA	NA	NA	NA		NA
Highesterion														
Felipatonic Felipatonic Section Sectio														
Methocychire 35														
Description														
All		50	-0.00					-0.00	.473				-0.00	. 01
April	-		86.9 B	NA	NA	NA	NA	847	NA	NA	NA	NA	135 B	NA
Barum		3			NA	NA	NA	<20.0			NA			
Segulum														
Cadmium														
Calcium														
Debated Integraphics So														
Detected Inorganics														
Cobait		**												
Cyanide 200			<10.0	NA	NA	NA	NA	<10.0	NA	NA	NA	NA	<10.0	NA
Cyanide, Available 54 <2 NA NA NA 11 <2 NA NA <td>Copper</td> <td></td>	Copper													
Inform														
Lead														
Magnesium														
Manganese 300 <15.0 NA NA NA NA NA NA NA N														
Mercury		300												
Polassium														
Selenium														
Silver														
Sodium														
Thellium														
Detected Inorganics-Filtered Support														
Detected Inorganics-Filtered	Vanadium													
Iron			<50.0	NA	NA	NA	NA	<50.0	NA	NA	NA	NA	<50.0	NA
Manganese 300 <15.0														
Alkalinity, CaCO3														
Alkalinity, CaCO3 NA		300	<10.0	INA	INA	INA	INA	55.8	INA	INA	INA	INA	10.0 D	INA
Available Cyanide NA			NA	ŊA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BOD														
Carbon monoxide <400 NA NA NA NA A			110,000	NA	NA	NA	NA	67,000	NA	NA	NA	NA	12,000	NA
Carbonate, CaCO3 NA														
COD 199,000 NA NA NA NA 127,000 NA NA NA 36,700 NA Chloride 250,000 240,000 NA														
Chloride 250,000 240,000 NA														
DOC Average Quads 81,000 NA NA NA NA 19,000 NA NA NA 10,000 NA Hardness, Ca/CO3 NA NA<														
Hardness, Ca/CO3 NA	DOC Average Quads													
Iron, Ferrous	Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane 2,200 NA NA NA NA 8,200 NA NA NA 720 NA Nitrate Nitrogen 10,000 34 B NA														
Nitrate + Nitrite (as N) NA <8 NA NA NA NA NA <2,000 NA NA NA NA NA <8 NItrate + Nitrite (as N) NA <8 NA														
Nitrate Nitrogen 10,000 34 B NA														
Nitrite Nitrogen 1,000 120 NA NA NA NA SOURCE NA SOURCE NA														
Oil and Grease NA	Nitrite Nitrogen													
Oxygen 1,400 NA NA NA NA 700 NA NA NA 5,900 NA pH NA	Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PH NA	Orthophosphate													
Sulfate 250,000 140,000 240,000 NA NA NA 210,000 198,000 NA NA NA 150,000 156,000 Sulfide 50 6,600 NA														
Sulfide 50 6,600 NA NA NA NA 46,000 NA														
TOC Average Quads 81,000 NA NA NA NA NA 20,000 NA NA NA NA 10,000 NA														
		1,000,000	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA

	I				JUSE, NEW 1							
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance		MW-19D			MW-19D1	MANA	-20S	MAA	-20D	MINA	<i>I</i> -21S
Date Collected:	Values	03/27/03	01/31/06	03/24/08	12/07/10	04/08/03	04/23/03	02/02/06	04/23/03	01/25/06	04/10/03	02/25/13
Detected Volatile Organics	Values	00/21/00	0.70.700	30,2 1,70	12,017.10	0 1,700,700	0 1/20/00	02/02/00	0 1/20/00	0.720700	0 11 10/00	02,20,10
1,1,1-Trichloroethane	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
1,1,2,2-Tetrachloroethane	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
1,1,2-Trichloroethane	1	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
1,1-Dichloroethane	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
2-Butanone		26 J	NA	NA	NA	390	<10	NA	40	NA	<10	NA
2-Hexanone	50	<50	NA	NA	NA	20	<10	NA	<20	NA	<10	NA
4-Methyl-2-pentanone		<50	NA	NA	NA	17	<10	NA	2.0 J	NA	<10 J	NA
Acetone	50	140	NA	NA	NA	2,000	10 J	NA	110	NA	<10	NA
Benzene	1	480	2,400 [1,700]	660 D	710	<5.0 J	2.0 J	2.6 J	230	210	<5.0	0.38 J
Bromodichloromethane Bromoform	50 50	<25 <25	NA NA	NA NA	NA NA	<5.0 J <5.0 J	<5.0 <5.0	NA NA	<10 <10	NA NA	<5.0 <5.0 J	NA NA
Bromomethane	5	<25 <25	NA NA	NA NA	NA NA	<5.0 J	<5.0 <5.0	NA NA	<10	NA NA	<5.0	NA NA
Carbon Disulfide		<25	NA NA	NA NA	NA NA	<5.0 J	<5.0	NA NA	<10	NA NA	<5.0	NA NA
Chlorobenzene	5	<25	NA NA	NA NA	NA NA	<5.0 J	<5.0	NA NA	<10	NA NA	<5.0	NA NA
Chloroform	7	<25	NA NA	NA NA	NA NA	<5.0 J	<5.0	NA NA	<10	NA	<5.0	NA NA
Chloromethane		<25	NA NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0 J	NA
Dibromochloromethane	50	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0 J	NA
Ethylbenzene	5	3.0 J	<40 [<40]	37	40	0.70 J	0.70 J	<1.0	11	35	<5.0	<1.0
Methylene Chloride	5	<6.0	NA	NA	NA	<5.0 J	<5.0	NA	1.0 J	NA	< 0.40	NA
Styrene	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
Tetrachloroethene	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
Toluene	5	10 J	14 J [<12]	3.7 J	<25	1.0 J	1.0 J	1.6 J	15	34	<5.0	<1.0
Trichloroethene	5	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
Vinyl Chloride	2	<25	NA	NA	NA	<5.0 J	<5.0	NA	<10	NA	<5.0	NA
Xylenes (total)	5	6.0 J	46 J [<40]	65	47	3.0 J	2.0 J	1.2 J	28	99	<5.0	<1.0
Total BTEX		500 J	2,500 J [1,700]	770 J	800 800	4.7 J	5.7 J	5.4 J 5.4 J	280	380 380	<5.0	0.38 J
Total VOCs		670 J	2,500 J [1,700]	770 J	800	2,400 J	16 J	5.4 J	440 J	380	<10	0.38 J
Detected Semivolatile Organ	50	-44	NIA.	NA	NIA.	<1,000	.40	NA	0.00	NIA	.40	NIA .
2,4-Dimethylphenol 2,4-Dinitrophenol	10	<11 <53	NA NA	NA NA	NA NA	<5,000	<10 <50	NA NA	0.80 J <50	NA NA	<10 <50	NA NA
2-Chloronaphthalene	10	<55 <11	NA NA	NA NA	NA NA	<1,000	<10	NA NA	<10	NA NA	<10	NA NA
2-Methylnaphthalene		<11	<0.60 [<0.60]	<11	<8.8	<1,000	1.0 J	<0.70	<10	<0.60	<10	NA NA
2-Methylphenol		1.0 J	NA	NA	NA	<1,000	<10	NA	<10	NA	<10	NA NA
2-Nitrophenol		<11	NA NA	NA NA	NA NA	<1,000	<10	NA NA	<10	NA	<10	NA NA
3,3'-Dichlorobenzidine	5	<21	NA NA	NA	NA	<2,000	<20	NA	<20	NA	<20	NA
4-Methylphenol		14	NA	NA	NA	6,800	<10	NA	58	NA	<10	NA
4-Nitroaniline	5	<21	NA	NA	NA	<2,000	<20	NA	<20	NA	<20	NA
Acenaphthene	20	<11	<0.80 [<0.80]	<11	<8.8	<1,000	0.90 J	< 0.90	<10	< 0.80	<10	NA
Acenaphthylene		<11	<0.80 [<0.80]	<11	<8.8	<1,000	0.60 J	< 0.90	<10	<0.80	<10	NA
Anthracene	50	<11	<1.0 [<1.0]	<11	<8.8>	<1,000	<10	<1.0	<10	<1.0	<10	NA
Benzo(a)anthracene	0.002	<11	<1.0 [<1.0]	<11	<8.8>	<1,000	<10	<1.0	<10	<1.0	<10	NA
Benzo(a)pyrene	0	<11	<1.0 [<1.0]	<11	<8.8>	<1,000	<10	<1.0	<10	<1.0	<10	NA
Benzo(b)fluoranthene	0.002	<11	<2.0 [<2.0]	<11	<8.8	<1,000	<10	<2.0	<10	<2.0	<10	NA
Benzo(g,h,i)perylene		<11	<1.0 [<1.0]	<11	<8.8	<1,000	<10	<1.0	<10	<1.0	<10	NA
Benzo(k)fluoranthene	0.002 5	<11 <11	<0.90 [<0.90] NA	<11 NA	<8.8 NA	<1,000 <1.000	<10 <10	<1.0 NA	<10 2.0 J	<0.90 NA	<10 <10	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	50	<11	NA NA	NA NA	NA NA	<1,000	<10	NA NA	<10 <10	NA NA	<10	NA NA
Detected Semivolatile Organ		~ 111	11/1	1474	147	<1,000	<u> </u>	1474	_ \10	14/4	<u> </u>	14/4
Carbazole		<11	NA	NA	NA	<1.000	5.0 J	NA	<10	NA	<10	NA
Chrysene	0.002	<11	<1.0 [<1.0]	<11	<8.8	<1,000	<10	<1.0	<10	<1.0	<10	NA NA
Dibenzo(a,h)anthracene	0.002	<11	<1.0 [<1.0]	<11	<8.8	<1,000	<10	<2.0	<10	<1.0	<10	NA NA
Dibenzofuran		<11	NA	NA	NA	<1,000	0.70 J	NA	<10	NA	<10	NA NA
Diethylphthalate	50	<11	NA NA	NA NA	NA	<1,000	<10	NA NA	<10	NA	<10	NA NA
Dimethylphthalate	50	<11	NA	NA	NA	<1,000	<10	NA	<10	NA	<10	NA
Di-n-Butylphthalate	50	<11	NA	NA	NA	<1,000	<10	NA	<10	NA	<10	NA
Di-n-Octylphthalate	50	<11	NA	NA	NA	<1,000	<10	NA	<10	NA	<10	NA
Fluoranthene	50	<11	<1.0 [<1.0]	<11	<8.8	<1,000	<10	<1.0	<10	<1.0	<10	NA
Fluorene	50	<11	<0.80 [<0.80]	<11	<8.8>	<1,000	1.0 J	< 0.90	<10	<0.80	<10	NA
Indeno(1,2,3-cd)pyrene	0.002	<11	<1.0 [<1.0]	<11	<8.8>	<1,000	<10	<1.0	<10	<1.0	<10	NA
Isophorone	50	1.0 J	NA	NA	NA	<1,000	<10	NA	<10	NA	<10	NA
Naphthalene	10	5.0 J	3.0 J [3.0 J]	6.1 J	2.6 J	<1,000	7.0 J	3.0 J	4.0 J	5.0 J	<10	8.4
Phenanthrene	50	<11	<0.70 [<0.70]	<11	<8.8	<1,000	1.0 J	2.0 J	<10	<0.70	<10	NA
Phenol	1	10 J	NA .	NA	NA	180 J	<10	NA	22	NA	0.90 J	NA
Pyrene	50	<11	<1.0 [<1.0]	<11	<8.8	<1,000	<10	<1.0	<10	<1.0	<10	NA
Total PAHs		5.0 J	3.0 J [3.0 J]	6.1 J	2.6 J	<1,000	12 J	5.0 J	4.0 J	5.0 J	<10	NA NA
Total SVOCs		31 J	3.0 J [3.0 J]	6.1 J	2.6 J	7,000 J	17 J	5.0 J	87 J	5.0 J	0.90 J	NA

				OTTO	USE, NEW 1							
Location ID:	NYSDEC TOGS 1.1.1		MW-19D			MW-19D1	BANA/	-20S	BANA/	-20D	BANA	<i>I</i> -21S
Date Collected:	Water Guidance Values	03/27/03	01/31/06	03/24/08	12/07/10	04/08/03	04/23/03	02/02/06	04/23/03	01/25/06	04/10/03	02/25/13
Detected Pesticides												-
4,4'-DDD	0.3	<0.19	NA	NA	NA	<0.15	<0.20	NA	<0.16	NA	<0.15	NA
4,4'-DDE	0.2	<0.13	NA	NA	NA	<0.10	<0.14	NA	<0.11	NA	<0.10	NA
4,4'-DDT	0.2	<0.13 J	NA NA	NA	NA	<0.10	<0.14	NA	<0.11	NA	<0.10	NA
Aldrin Alpha-BHC	0 0.01	0.035 J <0.064	NA NA	NA NA	NA NA	<0.050 0.027 J	<0.068 <0.068	NA NA	<0.053 <0.053	NA NA	<0.050 <0.050	NA NA
Alpha-Chlordane	0.05	0.040 J	NA NA	NA NA	NA NA	<0.050	<0.068	NA NA	<0.053	NA NA	<0.050	NA NA
Beta-BHC		<0.064	NA NA	NA NA	NA	<0.050	<0.068	NA NA	<0.053	NA NA	<0.050	NA NA
Delta-BHC		0.029 J	NA	NA	NA	0.065 J	0.069	NA	0.024 J	NA	<0.050	NA
Dieldrin	0.004	<0.13	NA	NA	NA	<0.10	<0.14	NA	<0.11	NA	<0.10	NA
Endosulfan I		<0.064	NA	NA	NA	< 0.050	<0.068	NA	< 0.053	NA	< 0.050	NA
Endosulfan II		<0.13	NA NA	NA	NA	<0.10	<0.14	NA	<0.11	NA NA	<0.10	NA
Endosulfan Sulfate Endrin	0	<0.13 <0.13	NA NA	NA NA	NA NA	0.058 J <0.10	<0.14 <0.14	NA NA	<0.11 <0.11	NA NA	<0.10 <0.10	NA NA
Endrin Aldehyde	5	<0.13	NA NA	NA	NA NA	<0.10	<0.14	NA NA	<0.11	NA NA	<0.10	NA NA
Gamma-BHC (Lindane)	0.05	<0.064	NA NA	NA NA	NA	<0.050	<0.068	NA NA	<0.053	NA NA	<0.050	NA NA
Gamma-Chlordane	0.05	< 0.064	NA	NA	NA	< 0.050	<0.068	NA	< 0.053	NA	< 0.050	NA
Heptachlor	0.04	<0.064	NA	NA	NA	<0.050	0.0095 J	NA	< 0.053	NA	< 0.050	NA
Heptachlor Epoxide	0.03	<0.064	NA	NA	NA	<0.050	<0.068	NA	< 0.053	NA	< 0.050	NA
Methoxychlor	35	<0.64	NA	NA	NA	<0.50	<0.68	NA	<0.53	NA	<0.50	NA
Detected Inorganics	-	120 D	NIA I	N/A	N/A	4 040 D	-2.500	NIA.	-10.500	I NIA	-0.500	N14
Antimony	3	138 B <20.0	NA NA	NA NA	NA NA	1,840 B <500	<2,500 <100	NA NA	<12,500 <500	NA NA	<2,500 <100	NA NA
Antimony Arsenic	25	18.6 B	NA NA	NA NA	NA NA	<1,000	<200	NA NA	<1,000	NA NA	<200	NA NA
Barium	1,000	415	NA NA	NA NA	NA	1,720	47.6 EJ	NA NA	310 EJ	NA	52.4	NA NA
Beryllium		<5.00	NA	NA	NA	<125	<25.0	NA	<125	NA	<25.0	NA
Cadmium	5	<10.0	NA	NA	NA	<250	<50.0	NA	<250	NA	<50.0	NA
Calcium		516,000	NA	NA	NA	511,000	542,000 EJ	NA	232,000 EJ	NA	123,000	NA
Chromium	50	13.4	NA	NA	NA	55.4 B	<50.0	NA	<250	NA	<50.0	NA
Detected Inorganics		0.00 D	NA	NIA	NA	250	50.0	NIA	050	l NA	50.0	NIA.
Cobalt Copper	200	2.90 B 1.50 B	NA NA	NA NA	NA NA	<250 <250	<50.0 31.0 B	NA NA	<250 <250	NA NA	<50.0 <50.0	NA NA
Cyanide	200	7.10 JB	8.50 B [8.60 B]	NA NA	NA	<10.0	106	84.9	15.2	58.3	17.3	27.0
Cyanide, Available		86	3	NA	NA	172	6	<2	<2	3	2	1.7 J
Iron	300	266	NA	NA	NA	2,690 B	<1,000	NA	<5,000	NA	<1,000	<100
Lead	25	<10.0	NA	NA	NA	<250	<50.0	NA	<250	NA	<50.0	NA
Magnesium		500	NA	NA	NA	13,700	304 BJ	NA	18,000 EJ	NA	18,200	NA
Manganese	300 0.7	7.50 B 1.20	NA NA	NA NA	NA NA	<375 <0.200	<75.0 <0.200 J	NA NA	<375 <0.200 J	NA NA	35.3 B <0.200	4.00 B NA
Mercury Nickel	100	16.2	NA NA	NA NA	NA NA	180 B	<50.0	NA NA	<250	NA NA	<50.200	NA NA
Potassium		134,000 EJ	NA NA	NA NA	NA	2,060,000 J	26,600	NA NA	62,000	NA	38,500 J	NA
Selenium	10	<30.0 J	NA	NA	NA	<750	<150	NA	<750	NA	<150	NA
Silver	50	<6.00	NA	NA	NA	<150	<30.0	NA	<150	NA	<30.0	NA
Sodium		119,000	NA	NA	NA	5,300,000	99,600	NA	3,620,000	NA	173,000	NA
Thallium		<40.0 4.60 B	NA NA	NA NA	NA NA	<1,000	<200 <30.0	NA NA	<1,000	NA NA	<200 5.80 B	NA NA
Vanadium Zinc	2,000	<50.0	NA NA	NA NA	NA NA	26.0 B <1,250	<250	NA NA	<150 <1,250	NA NA	<250	NA NA
Detected Inorganics-Filtered	2,000	<50.0	IVA	INA	INA	<1,250	\230	INA	<1,200	INA	\250	INA
Iron	300	110 B	NA	NA	NA	<1,000	<2,000	NA	<2,000	NA	<1,000	NA
Manganese	300	44.3	NA	NA	NA	<75.0	<150	NA	<150	NA	46.9 B	NA
Detected Miscellaneous												
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA 07.000	NA NA	NA	NA	NA NA	NA 020 P	NA NA	NA 42,000	NA NA	NA 2 200 I	890
BOD Carbon Dioxide by Headspace		97,000 <600	NA NA	NA NA	NA NA	>482,000 J <600	930 B <600	NA NA	42,000 <600	NA NA	3,200 J 3,800	NA <100
Carbon monoxide		<400	NA NA	NA NA	NA NA	<400	<400	NA NA	<400	NA NA	<400	NA
Carbonate, CaCO3		NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA
COD		374,000	NA	NA	NA	1,360,000	19,500	NA	233,000	NA	5,920 B	NA
Chloride	250,000	22,000,000	NA	NA	NA	66,000,000	100,000	NA	1,500 B	NA	380,000	NA
DOC Average Quads		80,000	NA NA	NA	NA	430,000	5,100	NA	51,000	NA	2,900	NA
Hardness, Ca/CO3		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
Iron, Ferric Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		8,800	NA NA	NA NA	NA	1,300	670	NA NA	18,000	NA NA	12	22.1
Nitrate + Nitrite (as N)		NA	<1,800 [<1,800]	NA	NA	NA	NA	<8	NA	<2,000	NA	400
Nitrate Nitrogen	10,000	<500	NA	NA	NA	<5,000	950	NA	<10,000	NA	1,400	130
Nitrite Nitrogen	1,000	<500	NA	NA	NA	<25,000	680	NA	6,600 B	NA	<100	270
Oil and Grease		NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA 27 D
Orthophosphate		740	NA NA	NA NA	NA NA	NA 770	NA 4,000	NA NA	NA 400	NA NA	NA 2,100	37 B NA
Oxygen		740 NA	NA NA	NA NA	NA NA	NA	4,000 NA	NA NA	NA	NA NA	2,100 NA	NA NA
nH				NA NA	NA NA	240,000	380,000	421,000	130,000	13,500	60,000	63,400
pH Sulfate	250.000	200.000	180,000 1179.0001	IVA								
pH Sulfate Sulfide	250,000 50	200,000 62,000	180,000 [179,000] NA	NA NA	NA	7,600	<1,000	NA	38,000	NA	43,000	<2,000
Sulfate												

Location ID:	NYSDEC TOGS 1.1.1	BANAL OA	D.			MAN OOC		
Date Collected:	Water Guidance Values	MW-21 04/10/03	02/25/13	03/28/03	02/02/06	MW-22S 03/24/08	12/07/10	02/28/13
Detected Volatile Organics	values	04/10/03	02/23/13	03/20/03	02/02/00	03/24/00	12/07/10	02/20/13
1,1,1-Trichloroethane	5	<5.0	NA	<5.0	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<5.0	NA NA	<5.0	NA NA	NA NA	NA	NA.
1,1,2-Trichloroethane	1	<5.0	NA	<5.0	NA	NA	NA	NA
1,1-Dichloroethane	5	<5.0	NA	<5.0	NA	NA	NA	NA
2-Butanone		7.0 J	NA	<10	NA	NA	NA	NA
2-Hexanone	50	<10	NA	<10	NA	NA	NA	NA
4-Methyl-2-pentanone		<10	NA	<10	NA	NA	NA	NA
Acetone	50	45 J	NA	<10	NA	NA	NA	NA
Benzene	1	20	4.8	<5.0	1.4 J	<1.0	<5.0	<0.50
Bromodichloromethane	50	<5.0	NA	<5.0	NA	NA	NA	NA
Bromoform	50	<5.0	NA	<5.0	NA	NA	NA	NA
Bromomethane	5	<5.0 J	NA	<5.0	NA	NA	NA	NA
Carbon Disulfide		<5.0	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA
Chlorobenzene Chloroform	5 7	<5.0 <5.0	NA NA	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA
Chloromethane		2.0 J	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	<5.0 <	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5	1.0 J	<1.0	<5.0	<1.0	<5.0	<5.0	<1.0
Methylene Chloride	5	0.40 J	NA	<5.0	NA	NA	NA	NA
Styrene	5	<5.0	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	5	<5.0	NA.	<5.0	NA NA	NA.	NA.	NA.
Toluene	5	8.0	1.8	<5.0	0.66 J	<5.0	<5.0	<1.0
Trichloroethene	5	<5.0	NA	<5.0	NA	NA	NA	NA
Vinyl Chloride	2	<5.0	NA	<5.0	NA	NA	NA	NA
Xylenes (total)	5	12	2.4	<5.0	<1.0	<5.0 J	<5.0	0.71 J
Total BTEX		41 J	9.0	<5.0	2.1 J	<5.0	<5.0	0.71 J
Total VOCs		95 J	9.0	<10	2.1 J	<5.0	<5.0	0.71 J
Detected Semivolatile Organ	nics							
2,4-Dimethylphenol	50	0.90 J	NA	<10	NA	NA	NA	NA
2,4-Dinitrophenol	10	<50	NA	<50	NA	NA	NA	NA
2-Chloronaphthalene	10	<10	NA	<10	NA	NA	NA	NA
2-Methylnaphthalene		1.0 J	NA	<10	<0.60	<11	<4.2	NA
2-Methylphenol		2.0 J	NA	<10	NA	NA	NA	NA
2-Nitrophenol		<10	NA	<10	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	<20	NA	<20	NA	NA	NA	NA
4-Methylphenol		10	NA	<10	NA	NA NA	NA	NA
4-Nitroaniline	5 20	<20	NA NA	<20	NA 0.00	NA 44	NA .1.0	NA NA
Acenaphthene	20	<10	NA	<10	<0.80	<11	<4.2 <4.2	NA NA
Acenaphthylene	50	<10	NA NA	<10 <10	<0.80 <1.0	<11 <11	<4.2 <4.2	NA NA
Anthracene Benzo(a)anthracene	0.002	<10 <10	NA NA	<10	<1.0	<11	<4.2	NA NA
Benzo(a)pyrene	0.002	<10	NA NA	<10	<1.0	<11	<4.2	NA NA
Benzo(b)fluoranthene	0.002	<10	NA NA	<10	<2.0	<11	<4.2	NA NA
Benzo(g,h,i)perylene		<10	NA NA	<10	<1.0	<11	<4.2	NA.
Benzo(k)fluoranthene	0.002	<10	NA NA	<10	<0.90	<11	<4.2	NA NA
bis(2-Ethylhexyl)phthalate	5	<10	NA	<10	NA	NA	NA	NA
Butylbenzylphthalate	50	<10	NA	<10	NA	NA	NA	NA
Detected Semivolatile Organ	nics			•	•			
Carbazole		0.40 J	NA	<10	NA	NA	NA	NA
Chrysene	0.002	<10	NA	<10	<1.0	<11	<4.2	NA
Dibenzo(a,h)anthracene		<10	NA	<10	<1.0	<11	<4.2	NA
Dibenzofuran		<10	NA	<10	NA	NA	NA	NA
Diethylphthalate	50	<10	NA	<10	NA	NA	NA	NA
Dimethylphthalate	50	<10	NA	<10	NA	NA	NA	NA
Di-n-Butylphthalate	50	<10	NA	<10	NA	NA	NA	NA
Di-n-Octylphthalate	50	<10	NA	<10	NA	NA	NA	NA
Fluoranthene	50	<10	NA	<10	<1.0	<11	<4.2	NA
Fluorene	50	<10	NA	<10	<0.80	<11	<4.2	NA
Indeno(1,2,3-cd)pyrene	0.002	<10	NA	<10	<1.0	<11	<4.2	NA
Isophorone	50	<10	NA 10	<10	NA 0.70 I	NA	NA	NA 0.4
Naphthalene	10	14	12	1.0 J	0.70 J	<11	<4.2	6.4
Phenanthrene	50	0.50 J	NA NA	<10	<0.70	<11 NA	<4.2	NA NA
Phenol	1	22	NA NA	<10	NA -1.0	NA -11	NA -4.2	NA NA
Pyrene Total PAHs	50	<10 16 J	NA NA	<10 1.0 J	<1.0 0.70 J	<11 <11	<4.2 <4.2	NA NA
Total SVOCs			NA NA		0.70 J 0.70 J	<11 <11		NA NA
TOTAL SYOUS		51 J	INA	1.0 J	0.70 J	<11	<4.2	INA

	NYSDEC TOGS 1.1.1							
Location ID:	Water Guidance	MW-21D		00/00/00	00/00/00	MW-22S	40/07/40	00/00/40
Date Collected:	Values	04/10/03	02/25/13	03/28/03	02/02/06	03/24/08	12/07/10	02/28/13
Detected Pesticides	0.0	0.40	NIA	0.40	NIA	NA	NIA	NIA
4,4'-DDD 4,4'-DDE	0.3 0.2	<0.16 <0.11	NA NA	<0.16 <0.11	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	<0.11	NA NA	<0.11 J	NA NA	NA NA	NA NA	NA NA
Aldrin	0	<0.054	NA NA	<0.053	NA NA	NA NA	NA	NA.
Alpha-BHC	0.01	<0.054	NA	< 0.053	NA	NA	NA	NA
Alpha-Chlordane	0.05	< 0.054	NA	< 0.053	NA	NA	NA	NA
Beta-BHC		<0.054	NA	< 0.053	NA	NA	NA	NA
Delta-BHC		0.022 J	NA	< 0.053	NA	NA	NA	NA
Dieldrin	0.004	<0.11	NA	<0.11	NA	NA NA	NA	NA
Endosulfan I Endosulfan II		<0.054 <0.11	NA NA	<0.053 <0.11	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate		<0.11	NA	<0.11	NA NA	NA NA	NA NA	NA NA
Endrin	0	<0.11	NA.	<0.11	NA NA	NA.	NA.	NA.
Endrin Aldehyde	5	<0.11	NA	<0.11	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	< 0.054	NA	< 0.053	NA	NA	NA	NA
Gamma-Chlordane	0.05	<0.054	NA	< 0.053	NA	NA	NA	NA
Heptachlor	0.04	<0.054	NA	< 0.053	NA	NA	NA	NA
Heptachlor Epoxide	0.03	<0.054	NA	<0.053	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	<0.54	NA	<0.53	NA	NA	NA	NA
Detected Inorganics	-	E20 D	N/A	0.500	NIA.	N/A	I NIA	NIA.
Aluminum	3	538 B <100	NA NA	8,530 <20.0	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	<100 <200	NA NA	<20.0 8.40 B	NA NA	NA NA	NA NA	NA NA
Barium	1,000	383	NA NA	72.0	NA NA	NA NA	NA NA	NA NA
Beryllium		<25.0	NA	<5.00	NA	NA	NA	NA
Cadmium	5	<50.0	NA	<10.0	NA	NA	NA	NA
Calcium		698,000	NA	880,000	NA	NA	NA	NA
Chromium	50	<50.0	NA	111	NA	NA	NA	NA
Detected Inorganics								
Cobalt		<50.0	NA	7.40 B	NA	NA	NA	NA
Copper	200	<50.0	NA	140	NA 1.00	NA	NA	NA 10.0
Cyanide	200	14.6 9.000000000000001	41.0	<10.0 J	<1.00 <2	NA NA	NA NA	<10.0
Cyanide, Available Iron	300	757 B	2.7 34.7 B	7,630	NA	NA NA	NA NA	0.54 J 28.8 B
Lead	25	<50.0	NA	112	NA NA	NA NA	NA NA	NA
Magnesium		521	NA	29,500	NA	NA	NA	NA
Manganese	300	24.3 B	<15.0	918	NA	NA	NA	2.40 B
Mercury	0.7	0.800	NA	0.310	NA	NA	NA	NA
Nickel	100	9.00 B	NA	72.8	NA	NA	NA	NA
Potassium		54,100 J	NA	6,620 EJ	NA	NA	NA	NA
Selenium	10	<150	NA	<30.0 J	NA	NA NA	NA	NA
Silver Sodium	50	<30.0 707,000	NA NA	1.60 B 52,900	NA NA	NA NA	NA NA	NA NA
Thallium		<200	NA	<40.0	NA NA	NA NA	NA NA	NA NA
Vanadium		<30.0	NA NA	20.1	NA NA	NA NA	NA NA	NA NA
Zinc	2,000	<250	NA	152	NA	NA	NA	NA
Detected Inorganics-Filtered	,							
Iron	300	<1,000	NA	6,040	NA	NA	NA	NA
Manganese	300	<75.0	NA	912	NA	NA	NA	NA
Detected Miscellaneous								
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA .	2,700	NA	NA	NA	NA	32 B
BOD		15,000 J	NA	2,600	NA	NA	NA	NA
Carbon Dioxide by Headspace		<600 <400	<100 NA	<600 <400	NA NA	NA NA	NA NA	<100 NA
Carbon monoxide Carbonate, CaCO3		×400 NA	NA NA	<400 NA	NA NA	NA NA	NA NA	NA NA
COD		64,200	NA NA	<10.000	NA NA	NA NA	NA NA	NA NA
Chloride	250,000	1.500.000	NA NA	53.000	NA NA	NA NA	NA	NA NA
DOC Average Quads		12,000	NA	2,100	NA	NA	NA	1,600
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	<200
Iron, Ferrous		NA	NA	NA	NA	NA	NA	<100
Methane		1,300	65.8	31	NA 074	NA	NA	1.21 JB
Nitrate + Nitrite (as N)	40.000	NA 240	80 B	NA 200	271	NA NA	NA NA	210
Nitrate Nitrogen	10,000	240	70 B	360	NA NA	NA NA	NA NA	210
Nitrite Nitrogen Oil and Grease	1,000	<500 NA	9.7 B NA	<100 NA	NA NA	NA NA	NA NA	3.6 B NA
Orthophosphate		NA NA	83 B	NA NA	NA NA	NA NA	NA NA	13 B
Oxygen		770	NA	12,000	NA NA	NA NA	NA	NA NA
pH		NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Sulfate	250,000	37,000	42,100	200,000	140,000	NA	NA	161,000
Sulfide	50	9,000	5,000	<1,000	NA	NA	NA	<2,000
TOC Average Quads Total Dissolved Solids		14,000	4,600	2,200	NA	NA	NA	NA
	1,000,000	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1												
Location ID:	Water Guidance			MW-22D						MW-23S			
Date Collected:	Values	04/08/03	01/24/06	03/24/08	02/27/13	02/28/13	01/30/06	05/10/06	08/17/06	11/15/06	03/27/08	12/09/10	03/01/13
Detected Volatile Organics													
1,1,1-Trichloroethane	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane 2-Butanone	5	<5.0 15	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Hexanone	50	<10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methyl-2-pentanone		<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Acetone	50	86	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA.	NA.
Benzene	1	42	30	13	31	NA	6.0 J	8.1	6.6	5.9	6.9	6.6	7.2
Bromodichloromethane	50	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	<5.0	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA
Chloromethane Dibromochloromethane	 50	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	50	<5.0 <10	13	4.1 J	12	NA NA	26	42	39	32	22	31	30
Methylene Chloride	5	<0.40	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
Styrene	5	<5.0	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Tetrachloroethene	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	60	74	26	57	NA	46	53	42	36	22	20	22
Trichloroethene	5	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	190	330	93	210	NA	220	260	230	190	120	180	200
Total BTEX Total VOCs		290	450	140 J	310	NA	300 J	360	320	260	170 170	240	260
Detected Semivolatile Organ		390	450	140 J	310	NA	300 J	360	320	260	170	240	260
2,4-Dimethylphenol	50	<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	<40 <200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Chloronaphthalene	10	<40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
2-Methylnaphthalene		2.0 J	<6.0	<110	NA NA	NA.	130 J	130 J	170 J	160 J	65	68	NA.
2-Methylphenol		2.0 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol		<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	<80	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol		9.0 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5	<80	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<40	<8.0	<110	NA	NA	<17	<20	<16	<16	2.0 J	2.5 J	NA
Acenaphthylene	50	<40 <40	<8.0 <10	<110 <110	NA NA	NA NA	40 J <21	48 J	43 J	46 J	21 <10	26 <4.2	NA NA
Anthracene Benzo(a)anthracene	0.002	<40 <40	<10	<110	NA NA	NA NA	<25	<25 <30	<20 <24	<20 <15	<10	<4.2 <4.2	NA NA
Benzo(a)pyrene	0.002	<40	<11	<110	NA NA	NA NA	<23	<27	<22	<10	<10	<4.2	NA
Benzo(b)fluoranthene	0.002	<40	<15	<110	NA NA	NA.	<32	<38	<31	<19	<10	<4.2	NA NA
Benzo(g,h,i)perylene		<40	<10	<110	NA	NA	<22	<26	<21	<6.0	<10	<4.2	NA
Benzo(k)fluoranthene	0.002	<40	<9.0	<110	NA	NA	<19	<23	<18	<19	<10	<4.2	NA
bis(2-Ethylhexyl)phthalate	5	<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ	, , , , , , , , , , , , , , , , , , , ,												
Carbazole		<40	NA 40	NA 440	NA NA	NA	NA 20	NA O4	NA 40	NA OO	NA 40	NA .4.0	NA
Chrysene Dibonzo(a b)anthracono	0.002	<40 <40	<10	<110 <110	NA NA	NA NA	<20 <28	<24 <34	<19 <27	<23	<10 <10	<4.2	NA NA
Dibenzo(a,h)anthracene Dibenzofuran		<40 <40	<13 NA	NA	NA NA	NA NA	NA	NA	NA	<5.0 NA	NA	<4.2 NA	NA NA
Diethylphthalate	50	<40 <40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	<40	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Octylphthalate	50	<40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	50	<40	<11	<110	NA	NA	<23	<27	<22	<18	<10	<4.2	NA
Fluorene	50	<40	<8.0	<110	NA	NA	<16	<19	<15	<14	3.6 J	4.4	NA
Indeno(1,2,3-cd)pyrene	0.002	<40	<12	<110	NA	NA	<24	<29	<23	<6.0	<10	<4.2	NA
Isophorone	50	<40	NA	NA	NA	NA	NA 1,000	NA 1.000	NA 1.000	NA 1.000	NA 700 D	NA 200 D	NA
Naphthalene	10	230 <40	290 <7.0	380 <110	300	NA NA	1,300 <14	1,600	1,600	1,300	730 D 1.6 J	660 D 2.3 J	3,000 NA
Phenanthrene Phenol	50 1	<40 83	<7.0 NA	<110 NA	NA NA	NA NA	<14 NA	<16 NA	<13 NA	<14 NA	1.6 J NA	NA	NA NA
Pyrene	50	<40	<10	<110	NA NA	NA NA	<21	<25	<20	<19	<10	NA <4.2	NA NA
Total PAHs		230 J	290	380	NA NA	NA NA	1,500 J	1,800 J	1,800 J	1,500 J	820 J	760 J	NA NA
Total SVOCs		330 J	290	380	NA NA	NA.	1,500 J	1,800 J	1,800 J	1,500 J	820 J	760 J	NA NA
		0000		000			.,000	.,,,,,,,,,	.,000	.,,000	0200		

					STRACUSE,	TEN TORIC							
I anatina ID.	NYSDEC TOGS 1.1.1			MAY OOD						MANAY OOC			
Location ID: Date Collected:	Water Guidance Values	04/08/03	01/24/06	MW-22D 03/24/08	02/27/13	02/28/13	01/30/06	05/10/06	08/17/06	MW-23S 11/15/06	03/27/08	12/09/10	03/01/13
Detected Pesticides	Values		0.02.000	3312.1133				55,15,55	00,11,00	.,,,,,,,,	00.2.100	12,000,10	55.5
4,4'-DDD	0.3	<0.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT Aldrin	0.2	<0.10 <0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-BHC	0.01	<0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	0.05	<0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Beta-BHC		< 0.050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC		0.0096 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	0.004	<0.10	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I Endosulfan II		<0.050 <0.10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate		<0.10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Endrin	0	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	5	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	<0.050	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane Heptachlor	0.05 0.04	<0.050 <0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor Epoxide	0.03	<0.050	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics													
Aluminum		<12,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	<500	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic Barium	25 1,000	<1,000 232	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium		<125	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	5	<250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		562,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	<250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics		250	l NA	l NA	NIA	NIA	NIA	NIA	l NA	I NIA	NA	NIA	NIA
Cobalt Copper	200	<250 <250	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyanide	200	2.50 B	9.70 B	NA NA	91.0	NA NA	674	654	658	232 J	260	510	2,300
Cyanide, Available		17	<2	NA	24	NA	<2	NA	NA	NA	NA	NA	33
Iron	300	<5,000	NA	NA	NA	<100	NA	NA	NA	NA	NA	NA	1,690
Lead	25	<250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium Manganese	300	13,200 <375	NA NA	NA NA	NA 24.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 59.3
Mercury	0.7	<0.200	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Nickel	100	<250	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
Potassium		102,000 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	<750	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver Sodium	50	<150 4,110,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		<1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		<150	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	<1,250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered													
Iron	300	<1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Detected Miscellaneous	300	<75.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA NA	NA NA	NA NA	24,600	NA NA	NA NA	NA NA	NA NA	NA	NA NA	<2	10,500
BOD		71,000 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA
Carbon Dioxide by Headspace		<600	NA	NA	<100	NA	NA	NA	NA	NA	NA	NA	<100
Carbon monoxide		<400	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbonate, CaCO3 COD		NA 232,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride	250,000	11.000.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
DOC Average Quads		37,000	NA	NA	NA	29,500	NA	NA	NA	NA	NA	NA	15,700
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA	1,700
Iron, Ferrous Methane		NA 11,000	NA NA	NA NA	NA 2,090	<100 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<100 193
Nitrate + Nitrite (as N)		11,000 NA	<4,000	NA NA	2,090 840	NA NA	NA <8	NA NA	NA NA	NA NA	NA NA	NA NA	64 B
Nitrate Nitrogen	10,000	<5,000	NA	NA	830	NA	NA	NA	NA	NA	NA	NA	57 B
Nitrite Nitrogen	1,000	<5,000	NA	NA	6.1 B	NA	NA	NA	NA	NA	NA	NA	7.4 B
Oil and Grease		NA	NA	NA	NA TA D	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA 700	NA NA	NA NA	74 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	87 B
Oxygen pH		790 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sulfate	250,000	220,000	175,000	NA NA	109,000	NA NA	322,000	NA NA	NA NA	NA NA	NA NA	NA NA	278,000
Sulfide	50	42,000	NA NA	NA	132,000	NA	NA	NA	NA	NA	NA	NA	12,000
TOC Average Quads		40,000	NA	NA	21,600	NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1							
Location ID: Date Collected:	Water Guidance	01/26/06	05/09/06	08/16/06	MW-23 11/14/06	D 03/26/08	12/09/10	03/01/13
Detected Volatile Organics	Values	01/20/06	05/09/06	06/16/06	11/14/00	03/26/06	12/09/10	03/01/13
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA NA	NA
4-Methyl-2-pentanone Acetone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	1	100	140	140	120	130 J	86 [82]	120
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Chloromethane Dibromochloromethane	 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5	<2.0	110	110	100	160	1.5 J [1.2 J]	83
Methylene Chloride	5	NA	NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA
Toluene	5	11	21	37	36	34 J	0.73 J [<5.0]	8.8
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	49	99	110	110	160 J	16 [16]	49
Total BTEX Total VOCs		160 160	370 370	400 400	370 370	480 J 480 J	100 J [99 J] 100 J [99 J]	260 260
Detected Semivolatile Organi	re	100	370	400	370	400 3	100 3 [99 3]	200
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		<6.0	<6.0	<6.0	<2.0	<110	<4.2 [<4.2]	NA
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol		NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol		NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline Acenaphthene	5 20	NA <8.0	NA <8.0	NA <8.0	NA <3.0	NA <110	NA <4.2 [<4.2]	NA NA
Acenaphthylene		<8.0	<8.0	<8.0	<3.0	<110	<4.2 [<4.2]	NA NA
Anthracene	50	<10	<10	<10	<4.0	<110	<4.2 [<4.2]	NA
Benzo(a)anthracene	0.002	<12	<12	<12	<3.0	<110	<4.2 [<4.2]	NA
Benzo(a)pyrene	0	<11	<11	<11	<2.0	<110	<4.2 [<4.2]	NA
Benzo(b)fluoranthene	0.002	<15	<15	<15	<4.0	<110	<4.2 [<4.2]	NA
Benzo(g,h,i)perylene		<10	<10	<10	<1.0	<110	<4.2 [<4.2]	NA
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	0.002 5	<9.0 NA	<9.0 NA	<9.0 NA	<4.0 NA	<110 NA	<4.2 [<4.2] NA	NA NA
Butylbenzylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organi		IVA	IVA	IVA	14/1	IVA	INA	INA
Carbazole		NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<10	<10	<10	<5.0	<110	<4.2 [<4.2]	NA
Dibenzo(a,h)anthracene		<13	<13	<13	<1.0	<110	<4.2 [<4.2]	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA NA	NA	NA	NA	NA NA	NA NA	NA
Di-n-Butylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate Fluoranthene	50 50	NA <11	NA <11	NA <11	NA <4.0	NA <110	NA <4.2 [<4.2]	NA NA
Fluorantnene	50	<8.0	<8.0	<8.0	<3.0	<110	<4.2 [<4.2] <4.2 [<4.2]	NA NA
Indeno(1,2,3-cd)pyrene	0.002	<12	<12	<12	<1.0	<110	<4.2 [<4.2]	NA NA
sophorone	50	NA NA	NA	NA	NA NA	NA	NA	NA
Naphthalene	10	540	460	400	230	400	400 D [450 D]	330
Phenanthrene	50	<7.0	<7.0	<7.0	<3.0	<110	<4.2 [<4.2]	NA
	1	NA	NA	NA	NA	NA	NA	NA
Phenol								
Phenol Pyrene Total PAHs	50	<10 540	<10 460	<10 400	<4.0 230	<110 400	<4.2 [<4.2] 400 [450]	NA NA

	NYSDEC TOGS 1.1.1							
Location ID:	Water Guidance				MW-23	D		
Date Collected:	Values	01/26/06	05/09/06	08/16/06	11/14/06	03/26/08	12/09/10	03/01/13
Detected Pesticides								
4,4'-DDD 4,4'-DDE	0.3 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4.4'-DDT	0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aldrin	0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA
Beta-BHC		NA	NA	NA	NA	NA	NA	NA
Delta-BHC Dieldrin		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I	0.004	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA	NA
Endrin	0	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	5	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	NA	NA	NA	NA NA	NA	NA NA	NA
Gamma-Chlordane Heptachlor	0.05 0.04	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor Epoxide	0.03	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Methoxychlor	35	NA	NA	NA	NA	NA	NA NA	NA
Detected Inorganics					•			•
Aluminum		NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA	NA	NA	NA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA NA	NA
Beryllium Cadmium	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium		NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Chromium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics					1	I.	I.	ı
Cobalt		NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA
Cyanide	200	29.4	16.8	42.3	37.4 J	68.0	149 [181]	250
Cyanide, Available		4	NA NA	NA	NA NA	NA	NA NA	6.8
Iron Lead	300 25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,090 NA
Magnesium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	300	NA	NA	NA	NA	NA	NA	31.6
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Silver Sodium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Vanadium		NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered								
Iron	300	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA NA	NA NA	NA NA	NA NA	67 J	NA <2	11,000
BOD		NA	NA NA	NA	NA NA	NA	NA	NA
Carbon Dioxide by Headspace		NA	NA	NA	NA	NA	NA NA	209
Carbon monoxide		NA	NA	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA
COD	250,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride DOC Average Quads	250,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	40.500
Hardness, Ca/CO3		NA	NA NA	NA NA	NA NA	NA	NA NA	10,500 NA
Iron, Ferric		NA	NA	NA	NA	NA	NA NA	1,100
Iron, Ferrous		NA	NA	NA	NA	NA	NA	<100
Methane		NA	NA	NA	NA	NA	NA	402
Nitrate + Nitrite (as N)	40.000	<40	NA NA	NA	NA NA	NA	NA NA	570
Nitrate Nitrogen	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	570 3.7 B
Nitrite Nitrogen Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Orthophosphate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	240
Oxygen		NA	NA	NA	NA	NA	NA NA	NA
pH		NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	2,560	NA	NA	NA	NA	NA	37,100
Sulfide	50	NA	NA	NA	NA	NA	NA	1,900 B
TOC Average Quads	1 000 000	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance				MW-2				
Date Collected:	Values	01/30/06	05/10/06	08/16/06	11/14/06	03/26/08	12/08/10	02/26/13	03/04/13
Detected Volatile Organics		N14			l NIA			514	110
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
4-Methyl-2-pentanone Acetone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	1	8.6	6.9	7.4	5.3	3.0	6.0	12	NA
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane Carbon Disulfide	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene Methylene Chloride	5	26 NA	15	11	3.6 J	5.7	12	19	NA NA
Methylene Chloride Styrene	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	5	28	15	12	6.8	8.1	14	27	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	180	89	56	22	43	68	110	NA NA
Total BTEX Total VOCs		240 240	130 130	86 86	38 J 38 J	60 60	100 100	160 160	NA NA
Detected Semivolatile Organ	ics	240	130	00	30 0	00	100	100	INA
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		3.0 J	2.0 J	2.0 J	3.0 J	4.5 J	4.3	NA	NA
2-Methylphenol 2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
4-Methylphenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<2.0	<0.80	<0.80	<2.0	<40	<4.3	NA	NA
Acenaphthylene	 50	<2.0	<0.80	<0.80	<2.0	<40 <40	0.50 J	NA NA	NA NA
Anthracene Benzo(a)anthracene	0.002	<2.0 <2.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<40 <40	0.36 J <4.3	NA NA	NA NA
Benzo(a)pyrene	0.002	<2.0	<1.0	<1.0	<1.0	<40	<4.3	NA	NA
Benzo(b)fluoranthene	0.002	<3.0	<2.0	<2.0	<2.0	<40	<4.3	NA	NA
Benzo(g,h,i)perylene		<2.0	<1.0	<1.0	<0.60	<40	<4.3	NA	NA
Benzo(k)fluoranthene	0.002	<2.0 NA	<0.90 NA	<1.0 NA	<2.0 NA	<40 NA	<4.3 NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	5 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organ		14/3	14/1	INA	14/1	1003	14/3	1 177	100
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<2.0	<1.0	<1.0	<2.0	<40	<4.3	NA	NA
Dibenzo(a,h)anthracene		<3.0	<1.0	<1.0	<0.50	<40	<4.3	NA	NA
Dibenzofuran Diethylphthalate	 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dietnylphthalate Dimethylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
Di-n-Octylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	50	<2.0	<1.0	<1.0	<2.0	<40	0.68 J	NA	NA
Fluorene	50	<2.0	<0.80	<0.80	<1.0	<40	<4.3	NA	NA
Indeno(1,2,3-cd)pyrene	0.002 50	<2.0 NA	<1.0 NA	<1.0 NA	<0.60 NA	<40 NA	<4.3 NA	NA NA	NA NA
Isophorone Naphthalene	10	120	75	72	110	160	190 DJ	180	NA NA
Phenanthrene	50	3.0 J	2.0 J	3.0 J	3.0 J	2.6 J	3.0 J	NA	NA
Phenol	1	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	50	<2.0	<1.0	<1.0	<2.0	<40	<4.3	NA	NA
Total PAHs		130 J	79 J	77 J	120 J	170 J	200 J	NA	NA
Total SVOCs		130 J	79 J	77 J	120 J	170 J	200 J	NA	NA

			STRACUSE,	NEW TOTAL					
	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance	04/00/00	05/40/00	00/40/00	MW-2		40/00/40	00/00/40	00/04/40
Date Collected:	Values	01/30/06	05/10/06	08/16/06	11/14/06	03/26/08	12/08/10	02/26/13	03/04/13
Detected Pesticides	0.2	NIA	NIA	NIA	NΙΛ	NIA	NΙΔ	NA	NIA
4,4'-DDD 4.4'-DDE	0.3 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA
Aldrin	0	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC		NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC		NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	0.004	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan I Endosulfan II		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate		NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
Endrin	0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Endrin Aldehyde	5	NA	NA	NA.	NA	NA	NA	NA	NA.
Gamma-BHC (Lindane)	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	35	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics									
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA
Cadmium	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium Chromium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics	30	INA	INA	INA	INA	INA	INA	INA	INA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyanide	200	178	587	630	409 J	1,000	875	1,100	NA
Cyanide, Available		2	NA	NA	NA	NA	NA	28	NA
Iron	300	NA NA	NA.	NA NA	NA NA	NA	NA.	NA NA	417
Lead	25	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	<15.0	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA	NA
Silver	50	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
Sodium Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	2,000	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
Detected Inorganics-Filtered		107	100	107	1471	100	1471	1471	1471
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA NA
Detected Miscellaneous									
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA NA	NA NA	NA NA	NA	15	<2	9,200	NA
BOD		NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide by Headspace		NA	NA	NA	NA	NA	NA	<100	NA
Carbon monoxide		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA
COD		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA	NA 10.500
DOC Average Quads		NA	NA NA	NA	NA	NA	NA NA	NA NA	19,500
Hardness, Ca/CO3		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 420
Iron, Ferric Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	420 <100
Methane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.8	<100 NA
Nitrate + Nitrite (as N)		83 B	NA NA	NA NA	NA NA	NA NA	NA NA	2,400	NA NA
Nitrate Nitrogen	10,000	NA	NA	NA	NA	NA NA	NA	1,700	NA
Nitrite Nitrogen	1,000	NA NA	NA NA	NA NA	NA	NA NA	NA NA	660	NA
Oil and Grease		NA	NA NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	<100	NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	544,000	NA	NA	NA	NA	NA	534,000	NA
Sulfide	50	NA	NA	NA	NA	NA	NA	<2,000	NA
TOC Average Quads		NA	NA	NA	NA	NA	NA	23,300	NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance	04/05/55	05/02/22	00/4=/		V-24D	40/05/15	00/52/12	00/01/15
Date Collected: Detected Volatile Organics	Values	01/26/06	05/09/06	08/15/06	11/15/06	03/26/08	12/08/10	02/26/13	03/04/13
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone 4-Methyl-2-pentanone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	50	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Benzene	1	240	250	230	250	220	100	210 [200]	NA
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane Carbon Disulfide	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	5	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA 40	NA 5.0	NA	NA
Ethylbenzene Methylene Chloride	5 5	<4.0 H NA	<2.0 NA	<2.0 NA	<2.0 NA	<10 NA	<5.0 NA	<2.0 [<2.0] NA	NA NA
Styrene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	5	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Toluene	5	2.9 J	1.3 J	0.95 J	0.95 J	0.51 J	<5.0	<2.0 [<2.0]	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total) Total BTEX	5	<4.0 240 J	<2.0 250 J	<2.0 230 J	<2.0 250 J	<10 220 J	<5.0 100	<2.0 [<2.0] 210 [200]	NA NA
Total VOCs		240 J	250 J	230 J	250 J	220 J	100	210 [200]	NA NA
Detected Semivolatile Organ	nics	2.00	2000	2000	2000	2200	.00	2.0 [200]	
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene 2-Methylphenol		<0.60 NA	<0.60 NA	<0.60 NA	<0.70 NA	<10 NA	<4.2 NA	NA NA	NA NA
2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
4-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<0.80	<0.80	<0.80	<0.90	<10	<4.2	NA	NA
Acenaphthylene Anthracene	 50	<0.80 <1.0	<0.80 <1.0	<0.80 <1.0	<0.90 <1.0	<10 <10	<4.2 <4.2	NA NA	NA NA
Benzo(a)anthracene	0.002	<1.0	<1.0	<1.0	<0.90	<10	<4.2	NA NA	NA
Benzo(a)pyrene	0	<1.0	<1.0	<1.0	<0.60	<10	<4.2	NA	NA
Benzo(b)fluoranthene	0.002	<2.0	<2.0	<2.0	<1.0	<10	<4.2	NA	NA
Benzo(g,h,i)perylene		<1.0	<1.0	<1.0	<0.40	<10	<4.2	NA	NA
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	0.002 5	<0.90 NA	<0.90 NA	<0.90 NA	<1.0 NA	<10 NA	<4.2 NA	NA NA	NA NA
Butylbenzylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organ	nics				l .				
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<1.0	<1.0	<10	<4.2	NA	NA
Dibenzo(a,h)anthracene		<1.0	<1.0	<1.0	<0.30	<10	<4.2	NA	NA
Dibenzofuran Diethylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	NA	NA	NA	NA	NA	NA	NA NA	NA
Di-n-Octylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	50	<1.0	<1.0	<1.0	<1.0	<10	<4.2	NA	NA
Fluorene	50	<0.80	<0.80	<0.80	<0.80	<10	<4.2	NA NA	NA NA
Indeno(1,2,3-cd)pyrene Isophorone	0.002 50	<1.0 NA	<1.0 NA	<1.0 NA	<0.40 J NA	<10 NA	<4.2 NA	NA NA	NA NA
Naphthalene	10	<0.70	<0.70	<0.70	<0.50	<10	<4.2	12 [<10]	NA NA
Phenanthrene	50	<0.70	<0.70	<0.70	<0.80	<10	<4.2	NA NA	NA
Phenol	1	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	50	<1.0	<1.0	<1.0	<1.0	<10	<4.2	NA	NA
Total PAHs		<2.0 <2.0	<2.0	<2.0 <2.0	<1.0 <1.0	<10 <10	<4.2	NA NA	NA NA
Total SVOCs		<2.0	<2.0	<2.0	<1.0	<10	<4.2	ΝA	NΑ

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance	04/00/00	05/00/00	00/45/00		V-24D	40/00/40	00/00/40	00/04/40
Date Collected:	Values	01/26/06	05/09/06	08/15/06	11/15/06	03/26/08	12/08/10	02/26/13	03/04/13
Detected Pesticides									
4,4'-DDD	0.3	NA	NA	NA	NA	NA NA	NA NA	NA	NA
4,4'-DDE 4,4'-DDT	0.2 0.2	NA NA	NA NA						
Aldrin	0.2	NA NA	NA NA						
Alpha-BHC	0.01	NA NA	NA.	NA NA	NA	NA.	NA NA	NA NA	NA.
Alpha-Chlordane	0.05	NA	NA NA	NA.	NA	NA.	NA.	NA NA	NA.
Beta-BHC		NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA
Delta-BHC		NA	NA						
Dieldrin	0.004	NA	NA						
Endosulfan I		NA	NA						
Endosulfan II		NA	NA						
Endosulfan Sulfate		NA	NA						
Endrin	0	NA	NA						
Endrin Aldehyde	5	NA	NA						
Gamma-BHC (Lindane)	0.05	NA	NA						
Gamma-Chlordane	0.05	NA	NA						
Heptachlor	0.04	NA	NA						
Heptachlor Epoxide	0.03	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Methoxychlor	35	NA	NA						
Detected Inorganics									
Aluminum		NA	NA						
Antimony	3	NA	NA						
Arsenic	25	NA NA	NA NA						
Barium	1,000	NA NA	NA NA						
Beryllium Cadmium	 5	NA NA	NA NA						
Calcium	5	NA NA	NA NA						
Chromium	50	NA NA	NA NA						
Detected Inorganics	30	INA	INA						
Cobalt		NA	NA						
Copper	200	NA NA	NA NA						
Cyanide	200	32.3	23.7	38.1	13.0 J	27.0	43.0	210 [240]	NA
Cyanide, Available	200	<2	NA	NA	NA	NA	NA	9.6 [9.9]	NA
Iron	300	NA	NA NA	NA NA	NA	NA NA	NA	NA	374
Lead	25	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA
Magnesium		NA	NA.	NA.	NA	NA.	NA.	NA.	NA
Manganese	300	NA	NA	NA	NA	NA	NA	32.3 [31.1]	NA
Mercury	0.7	NA	NA						
Nickel	100	NA	NA						
Potassium		NA	NA						
Selenium	10	NA	NA						
Silver	50	NA	NA						
Sodium		NA	NA						
Thallium		NA	NA						
Vanadium		NA	NA						
Zinc	2,000	NA	NA						
Detected Inorganics-Filtered									
Iron	300	NA	NA						
Manganese	300	NA	NA						
Detected Miscellaneous				1		1			
Alkalinity, CaCO3		NA	NA						
Available Cyanide		NA	NA	NA	NA	11	<2	75,000 [73,900]	NA
BOD		NA	NA	NA	NA	NA	NA	NA 0.770 (4.000)	NA
Carbon Dioxide by Headspace		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3,770 [4,280]	NA NA
Carbon monoxide		NA NA	NA NA						
Carbonate, CaCO3		NA NA	NA NA						
COD	250,000	NA NA	NA NA						
Chloride DOC Average Quads	200,000	NA NA	N1.4	N10	NA NA	NA NA	NA NA	NA NA	14,400
Hardness, Ca/CO3		NA NA	NA						
Iron, Ferric		NA NA	150 B						
Iron, Ferrous		NA NA	220						
Methane		NA	NA	NA NA	NA	NA NA	NA NA	3,340 [2,980]	NA
Nitrate + Nitrite (as N)		<160	NA	NA	NA	NA NA	NA	1,800 [640]	NA
Nitrate Nitrogen	10,000	NA	NA	NA NA	NA	NA	NA	1,800 [640]	NA
Nitrite Nitrogen	1,000	NA	NA	NA NA	NA	NA	NA	2.1 B [3 B]	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	71 B [74 B]	NA
Oxygen		NA	NA	NA	NA	NA	NA	NA .	NA
pH		NA	NA						
Sulfate	250,000	27,800	NA	NA	NA	NA	NA	<5,000 [<5,000]	NA
Sulfide	50	NA	NA	NA	NA	NA	NA	1,300 B [890 B]	NA
TOC Average Quads		NA	NA	NA	NA	NA	NA	15,100 [15,500]	NA
Total Dissolved Solids	1,000,000	NA	NA						

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance				MW-				
Date Collected:	Values	01/31/06	05/11/06	08/18/06	11/15/06	03/26/08	12/10/10	02/26/13	03/04/13
Detected Volatile Organics					I NIA	110	T 114		
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA 0.40	NA 3.5 J	NA 4.9 J	NA 2.8 J	NA 2.5	NA 4.0.1	NA 2.2	NA NA
Benzene Bromodichloromethane	1 50	<0.40 NA	NA	NA	Z.8 J NA	Z.5 NA	4.0 J NA	NA	NA NA
Bromoform	50	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane Dibromochloromethane	 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5	<1.0	<1.0	<1.0	1.4 J	1.0 J	<5.0	0.67 J	NA NA
Methylene Chloride	5	NA NA	NA	NA NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	4.3 J	3.5 J	4.2 J	3.0 J	2.9 J	3.1 J	2.6	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride Xylenes (total)	2 5	NA 6.9	NA 6.8	NA 4.8 J	NA 6.8	NA 6.3	NA 6.2	NA 3.9	NA NA
Total BTEX		11 J	14 J	4.6 J	14 J	13 J	13 J	9.4 J	NA NA
Total VOCs		11 J	14 J	14 J	14 J	13 J	13 J	9.4 J	NA
Detected Semivolatile Organ	ics		1	ı		I.	1		
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA .	NA	NA	NA
2-Methylnaphthalene 2-Methylphenol		4.0 J NA	4.0 J NA	2.0 J NA	3.0 J NA	1.9 J NA	2.6 J NA	NA NA	NA NA
2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<0.80	0.80 J	<0.90	<0.80	0.46 J	0.60 J	NA	NA
Acenaphthylene	 50	<0.80 1.0 J	<0.80	<0.80	<0.80 1.0 J	0.39 J 1.2 J	0.44 J	NA NA	NA NA
Anthracene Benzo(a)anthracene	0.002	<1.0 J	1.0 J <1.0	<1.0 <1.0	<0.80	<10	1.8 J <4.0	NA NA	NA NA
Benzo(a)pyrene	0.002	<1.0	<1.0	<1.0	<0.50	<10	<4.0	NA	NA
Benzo(b)fluoranthene	0.002	<2.0	<2.0	<2.0	<1.0	<10	<4.0	NA	NA
Benzo(g,h,i)perylene		<1.0	<1.0	<1.0	< 0.30	<10	<4.0	NA	NA
Benzo(k)fluoranthene	0.002	<0.90	<0.90	<1.0	<0.90	<10	<4.0	NA	NA
bis(2-Ethylhexyl)phthalate	5 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Butylbenzylphthalate Detected Semivolatile Organ		NA	NA	NA	NA	INA	NΑ	INA	NA
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<1.0	<1.0	<10	<4.0	NA NA	NA NA
Dibenzo(a,h)anthracene		<1.0	<1.0	<1.0	<0.20	<10	<4.0	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
Di-n-Butylphthalate Di-n-Octylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	1.0 J	<1.0	<1.0	<0.90	1.1 J	1.9 J	NA NA	NA NA
Fluorene	50	2.0 J	2.0 J	<0.80	1.0 J	0.68 J	1.9 J	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<1.0	<0.30 J	<10	<4.0	NA	NA
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	21	20	10 J	14	9.9 J	15	25	NA
Phenanthrene	50	10 J	9.0 J	5.0 J	8.0 J	8.1 J	11	NA	NA
Phenol	1 50	NA <1.0	NA <1.0	NA <1.0	NA <1.0	NA 0.54 J	NA 0.89 J	NA NA	NA NA
Pyrene	50								
Total PAHs		39 J	37 J	17 J	27 J	24 J	35 J	NA	NA

Location ID:	NYSDEC TOGS 1.1.1 Water Guidance				MW-	25S			
Date Collected:	Values	01/31/06	05/11/06	08/18/06	11/15/06	03/26/08	12/10/10	02/26/13	03/04/13
Detected Pesticides									
4,4'-DDD	0.3	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	NA	NA	NA	NA	NA	NA NA	NA	NA
4,4'-DDT Aldrin	0.2 0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-BHC	0.01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC		NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC		NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	0.004	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan I Endosulfan II		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate		NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Endrin	0	NA NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA
Endrin Aldehyde	5	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide Methoxychlor	0.03 35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics	55	14/4	14/1	INA	1474	1474	14/4	14/4	IVA
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	5	NA	NA	NA	NA	NA	NA	NA	NA
Calcium Chromium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics	50	INA	INA	INA	INA	INA	INA	INA	INA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyanide	200	<1.00	2.20 B	<1.30	<1.30 J	3.60 J	11.0	270	NA
Cyanide, Available		<2	NA	NA	NA	NA	NA	4.5	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA	34.3 B
Lead	25	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA 45.0	NA
Manganese Mercury	300 0.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<15.0 NA	NA NA
Nickel	100	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA	NA
Silver	50	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
Vanadium Zinc	2,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics-Filtered		INA	INA	INA	INA	INA	INA	INA	INA
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA NA	NA.	NA NA	NA	NA.	NA NA	NA	NA
Detected Miscellaneous			•	•			•		•
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	NA	3.8	<2	6,800	NA
BOD		NA	NA	NA	NA	NA	NA NA	NA 400	NA
Carbon Dioxide by Headspace Carbon monoxide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<100 NA	NA NA
Carbon monoxide Carbonate, CaCO3		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COD		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA	NA
DOC Average Quads		NA	NA	NA	NA	NA	NA	NA	30,500
Hardness, Ca/CO3	-	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA	NA	NA	NA	NA	<200
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 441	<100
Methane Nitrate + Nitrite (as N)		NA <8	NA NA	NA NA	NA NA	NA NA	NA NA	441 85 B	NA NA
Nitrate Nitrogen	10.000	NA	NA NA	NA NA	NA	NA NA	NA NA	<110	NA NA
Nitrite Nitrogen	1,000	NA	NA	NA	NA	NA NA	NA	67	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	NA	NA	NA	21 B	NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA
pH		NA CC 400	NA	NA	NA NA	NA NA	NA NA	NA	NA
Sulfate Sulfide	250,000	66,100 NA	NA NA	NA NA	NA NA	NA NA	NA NA	147,000 3,700	NA NA
TOC Average Quads	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	30,600	NA NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA NA	NA	NA
D.000 04 Oolido	.,000,000								

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance	01/27/06	05/10/06	08/15/06	MW-2	5D 03/26/08	12/10/10	02/26/13	03/04/13
Date Collected: Detected Volatile Organics	Values	01/2//06	05/10/06	08/15/06	11/14/06	03/26/08	12/10/10	02/26/13	03/04/13
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA NA	NA NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA
Acetone Benzene	50 1	NA 74	NA 75	NA 62	NA 66	NA 51	NA 40	NA 29	NA NA
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
Dibromochloromethane Ethylbenzene	50 5	NA <1.0	NA <1.0	NA <1.0	NA <1.0	NA 1.1 J	NA <5.0	NA <1.0	NA NA
Methylene Chloride	5	<1.0 NA	NA	<1.0 NA	<1.0 NA	NA	<5.0 NA	<1.0 NA	NA NA
Styrene Styrene	5	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	2.5 J	1.7 J	2.0 J	1.4 J	1.1 J	<5.0	<1.0	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	4.7 J	3.6 J	5.2	3.4 J	9.2	3.7 J	2.5	NA
Total BTEX Total VOCs		81 J 81 J	80 J 80 J	69 J 69 J	71 J 71 J	62 J 62 J	44 J 44 J	32 32	NA NA
Detected Semivolatile Organ	ire	013	80 3	093	713	02.3	44 3	32	INA
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA.	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		<0.60	<0.60	<1.0	<0.60	<10	<4.3	NA	NA
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol		NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol 4-Nitroaniline	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene	20	<0.80	<0.80	<2.0	<0.80	<10	<4.3	NA NA	NA
Acenaphthylene		<0.80	<0.80	<2.0	<0.80	<10	<4.3	NA	NA
Anthracene	50	<1.0	<1.0	<2.0	<1.0	<10	<4.3	NA	NA
Benzo(a)anthracene	0.002	<1.0	<1.0	<3.0	<0.80	<10	<4.3	NA	NA
Benzo(a)pyrene	0	<1.0	<1.0	<2.0	< 0.50	<10	<4.3	NA	NA
Benzo(b)fluoranthene	0.002	<2.0	<2.0	<3.0	<1.0	<10	<4.3	NA	NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<1.0 <0.90	<1.0 <0.90	<2.0 <2.0	<0.30 <0.90	<10 <10	<4.3 <4.3	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA	NA NA	NA	NA NA	NA
Butylbenzylphthalate	50	NA	NA	NA	NA NA	NA NA	NA	NA	NA
Detected Semivolatile Organ	ics		ı	ı		I.	1		
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<2.0	<1.0	<10	<4.3	NA	NA
Dibenzo(a,h)anthracene		<1.0	<1.0	<3.0	<0.20 J	<10	<4.3	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate Di-n-Butylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Fluoranthene	50	<1.0	<1.0	<2.0	<0.90	<10	<4.3	NA	NA
Fluorene	50	<0.80	<0.80	<2.0	<0.70	<10	<4.3	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<3.0	<0.30	<10	<4.3	NA	NA
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	<0.70	<0.70	<1.0	<0.40	<10	<4.3	6.9	NA
Phenanthrene Phenol	50 1	<0.70 NA	<0.70 NA	<1.0 NA	<0.70 NA	<10 NA	<4.3 NA	NA NA	NA NA
Pyrene	1 50	NA <1.0	<1.0	NA <2.0	NA <1.0	NA <10	NA <4.3	NA NA	NA NA
Total PAHs	JU	<2.0	<1.0	<3.0	<1.0	<10	<4.3 <4.3	NA NA	NA NA

			`	STRACUSE,	TEW TORK					
Date Collectors										
Description Part			04/07/00	05/40/00	00/45/00			40/40/40	00/00/40	00/04/40
4.4-DDD		Values	01/27/06	05/10/06	08/15/06	11/14/06	03/26/08	12/10/10	02/26/13	03/04/13
44-00PT		0.0	NIA				110			110
44-9DT										
Algerin	.,									
Alpha SHC										
Belle BHC										
Delies				NA	NA	NA	NA	NA	NA	NA
Dielefrin	Beta-BHC		NA	NA	NA	NA		NA		NA
Endosudifin										
Endosugifies										
Endostrian Sulfate										
Endirn										
Endrin Aldehyde										
Samma-Shrotindane										
Samma-Chlordane										
Hoptachior Epoxide										
Methoxychior	Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics	Heptachlor Epoxide	0.03								
Alumnium		35	NA	NA	NA	NA	NA	NA	NA	NA
Antimory 3										
Assenic 25										
Barlum										
Beryllium										
Cadmium										
Calcium										
Detected Inorganics										
Detected Inorganics										
Cobat				,						
Copper			NA	NA	NA	NA	NA	NA	NA	NA
Cyanide (Ayailable) 200 111 30.1 47.5 13.5 J 42.0 56.2 400 NA Cyanide, Ayailable < < 2 NA		200								
Iron										
Lead			<2	NA	NA	NA	NA	NA	24	NA
Magnesium	Iron	300	NA	NA	NA	NA	NA	NA	NA	170
Manganese										
Mercury										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Thailium										
Vanadium										
Detected Inorganics-Filtered South State South State							NA			
Iron	Zinc	2,000	NA	NA	NA	NA	NA	NA	NA	NA
Manganese 300	Detected Inorganics-Filtered									
Detected Miscellaneous	Iron	300	NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity, CaCO3 NA		300	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide										
BOD										
Carbon Dioxide by Headspace NA NA NA NA NA NA Q.480 NA Carbon monoxide NA NA<										
Carbon monoxide NA										
Carbonate, CaCO3 NA										
COD NA										
Chloride 250,000 NA										
DOC Average Quads NA NA NA NA NA NA 14,300 Hardness, Ca/CO3 NA										
Hardness, Ca/CO3										
Iron, Ferrous NA NA NA NA NA NA A <										
Methane NA NA NA NA NA 1,880 NA Nitrate + Nitrite (as N) <400										
Nitrate + Nitrite (as N) <400 NA NA NA NA NA 400 NA Nitrate Nitrogen 10,000 NA										
Nitrate Nitrogen 10,000 NA NA NA NA NA NA 380 NA Nitrite Nitrogen 1,000 NA										
Nitrite Nitrogen 1,000 NA NA NA NA NA NA 16 B NA Oil and Grease NA										
Oil and Grease NA										
Orthophosphate NA										
Oxygen NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
pH NA										
Sulfate 250,000 261,000 NA NA NA NA NA 208,000 NA Sulfide 50 NA NA NA NA NA NA 100,000 NA TOC Average Quads NA NA NA NA NA NA 14,200 NA										
Sulfide 50 NA NA NA NA NA 100,000 NA TOC Average Quads NA NA NA NA NA NA 14,200 NA										
TOC Average Quads NA NA NA NA NA NA 14,200 NA									,	
		1,000,000								

				OTTAGOO	E, NEW TOP	•••					
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-26S					MW-26D		
Date Collected:		01/31/06	03/27/08	12/08/10	02/27/13	03/04/13	01/27/06	03/25/08	12/08/10	02/27/13	03/04/13
Detected Volatile Organics											
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	4.0 J	NA 2.7	1.3 J	NA 1.4	NA NA	NA 43	NA 48	NA 20	NA 20 Mai	NA NA
Benzene Bromodichloromethane	1 50	NA	NA	NA	NA NA	NA NA	NA	NA	NA	20 [19] NA	NA NA
Bromoform	50	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Bromomethane	5	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide		NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Chlorobenzene	5	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA.
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA
Ethylbenzene	5	4.9 J	2.0 J	<5.0	0.77 J	NA	<1.0	0.73 J	<5.0	0.96 J [0.95 J]	NA
Methylene Chloride	5	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	13	6.4	2.8 J	3.4	NA	0.87 J	0.74 J	<5.0	<1.0 [<1.0]	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	44	21	7.7	7.6	NA	3.3 J	4.2 J	3.0 J	4.6 [4.3]	NA
Total BTEX		66 J	32 J	12 J	13 J	NA	47 J	54 J	23 J	26 J [24 J]	NA
Total VOCs		66 J	32 J	12 J	13 J	NA	47 J	54 J	23 J	26 J [24 J]	NA
Detected Semivolatile Organ											
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene 2-Methylnaphthalene	10	NA 6.0 J	NA 5.1 J	NA 3.9 J	NA NA	NA NA	NA 0.80 J	NA <11	NA <4.3	NA NA	NA NA
2-Methylphenol		NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA
2-Nitrophenol		NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
3,3'-Dichlorobenzidine	5	NA NA	NA.	NA NA	NA	NA	NA NA	NA.	NA.	NA.	NA.
4-Methylphenol		NA NA	NA.	NA NA	NA.	NA	NA.	NA.	NA.	NA.	NA.
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<2.0	<11	<4.2	NA	NA	<0.80	<11	<4.3	NA	NA
Acenaphthylene		<2.0	0.78 J	0.58 J	NA	NA	<0.80	<11	<4.3	NA	NA
Anthracene	50	<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA	NA
Benzo(a)anthracene	0.002	<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA	NA
Benzo(a)pyrene	0	<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA	NA
Benzo(b)fluoranthene	0.002	<3.0	<11	<4.2	NA	NA	<2.0	<11	<4.3	NA	NA
Benzo(g,h,i)perylene		<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA	NA
Benzo(k)fluoranthene	0.002	<2.0	<11	<4.2	NA	NA	<0.90	<11	<4.3	NA	NA
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ											
Carbazole		NA	NA	NA 4.0	NA	NA	NA .	NA	NA	NA	NA
Chrysene	0.002	<2.0	<11	<4.2	NA NA	NA	<1.0	<11	<4.3	NA NA	NA
Dibenzo(a,h)anthracene		<3.0	<11	<4.2	NA NA	NA NA	<1.0	<11	<4.3	NA NA	NA
Dibenzofuran Diethylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dimethylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<2.0	<11	0.71 J	NA NA	NA NA	<1.0	<11	<4.3	NA NA	NA
Fluorene	50	<2.0	<11	<4.2	NA	NA	<0.80	<11	<4.3	NA NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA NA	NA
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	83	50	21	22	NA	2.0 J	0.87 J	0.46 J	7.0 [6.4]	NA
Phenanthrene	50	4.0 J	4.3 J	5.3	NA	NA	<0.70	<11	<4.3	NA	NA
Phenol	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	50	<2.0	<11	<4.2	NA	NA	<1.0	<11	<4.3	NA	NA
Total PAHs		93 J	60 J	32 J	NA	NA	2.8 J	0.87 J	0.46 J	NA	NA
Total SVOCs		93 J	60 J	32 J	NA	NA	2.8 J	0.87 J	0.46 J	NA	NA

	NYSDEC TOGS 1.1.1										
Location ID:	Water Guidance			MW-26S					MW-26D		
Date Collected:	Values	01/31/06	03/27/08	12/08/10	02/27/13	03/04/13	01/27/06	03/25/08	12/08/10	02/27/13	03/04/13
Detected Pesticides	2.0	110	N1A			114		NIA.			110
4,4'-DDD 4,4'-DDE	0.3 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4.4'-DDT	0.2	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
Aldrin	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta-BHC		NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
Dieldrin Endosulfan I	0.004	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Endrin	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC (Lindane)	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Heptachlor Epoxide	0.03 35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor Detected Inorganics	ან	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	25	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA
Beryllium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics	T										
Cobalt		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Copper Cyanide	200 200	NA 5.00 B	NA NA	NA NA	NA 12.0	NA NA	NA 13.5	NA NA	NA NA	NA 120 [110]	NA NA
Cyanide, Available		<2	NA	NA NA	1.4 J	NA	<2	NA	NA NA	34 [36]	NA
Iron	300	NA	NA NA	NA NA	NA	<100	NA	NA NA	NA NA	NA	84.3 B
Lead	25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	3.20 B	NA	NA	NA	NA	54.5 [61.4]	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Potassium Selenium	10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sodium		NA.	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered											
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous	T										
Alkalinity, CaCO3		NA NA	NA NA	NA NA	NA CEO	NA	NA NA	NA	NA NA	NA	NA
Available Cyanide BOD		NA NA	NA NA	NA NA	650 NA	NA NA	NA NA	NA NA	NA NA	85,300 [79,400] NA	NA NA
Carbon Dioxide by Headspace		NA NA	NA NA	NA NA	<100	NA NA	NA NA	NA NA	NA NA	17,200 [17,900]	NA NA
Carbon monoxide		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COD		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DOC Average Quads		NA	NA	NA	NA	3,600	NA	NA	NA	NA	28,300
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA NA	NA NA	NA NA	NA NA	<200	NA NA	NA NA	NA NA	NA NA	84 B
Iron, Ferrous Methane		NA NA	NA NA	NA NA	NA 55.5	<100 NA	NA NA	NA NA	NA NA	NA 987 [1,070]	<100 NA
Nitrate + Nitrite (as N)		<8	NA NA	NA NA	550	NA NA	<1,800	NA NA	NA NA	110 [<100]	NA NA
Nitrate Nitrogen	10,000	NA	NA NA	NA NA	400	NA NA	NA	NA NA	NA NA	110 [<100]	NA NA
Nitrite Nitrogen	1,000	NA	NA	NA NA	150	NA	NA NA	NA	NA NA	4 B [4.6 B]	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	10 B	NA	NA	NA	NA	35 B [17 B]	NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA 1 000 000	NA	NA	NA	NA
Sulfate	250,000	91,600	NA NA	NA NA	105,000	NA NA	1,020,000	NA NA	NA NA	642,000 [703,000]	NA NA
Sulfide TOC Average Quads	50 	NA NA	NA NA	NA NA	<2,000 3,400	NA NA	NA NA	NA NA	NA NA	104,000 [112,000] 28,500 [30,900]	NA NA
Total Dissolved Solids		NA NA	NA NA	NA NA	3,400 NA	NA NA	NA NA	NA NA	NA NA	28,500 [30,900] NA	NA NA
Total Dissulved Sullus	1,000,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

	NYSDEC TOGS 1.1.1										
Location ID:	Water Guidance			MW-27S					N-27D		
Date Collected:	Values	01/31/06	03/25/08	12/07/10	02/27/13	03/04/13	02/02/06	03/25/08	12/07/10	02/27/13	03/04/13
Detected Volatile Organics	_	NIA	NIA			N10	NIA.	L		N14	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1.1-Dichloroethane	5	NA NA	NA.	NA NA	NA	NA.	NA.	NA NA	NA NA	NA NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA 70	NA	NA 07	NA 40	NA	NA 4.500	NA 1 200 (750)	NA 100	NA	NA
Benzene Bromodichloromethane	1 50	72 NA	62 NA	67 NA	43 NA	NA NA	1,500 NA	1,200 [750] NA	420 NA	630 NA	NA NA
Bromoform	50	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane Ethylbenzene	50 5	NA 810	NA 680	620	NA 490	NA NA	NA 120	NA 180 [130]	NA 120	NA 280	NA NA
Methylene Chloride	5	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
Styrene	5	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	62	56	57	40	NA	7.1 J	4.8 J [3.3 J]	<20	3.9 J	NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	2	NA 4.400	NA 1.000 J	NA 910	NA 600	NA NA	NA <20	NA 420 LIG E II	NA 20	NA 9.1	NA NA
Xylenes (total) Total BTEX	5	1,100 2.000	1,000 J 1,800 J	1,700	1,200	NA NA	<20 1.600 J	<120 J [6.5 J] 1,400 J [890 J]	<20 540	9.1 930 J	NA NA
Total VOCs		2,000	1,800 J	1,700	1,200	NA	1,600 J	1,400 J [890 J]	540	930 J	NA NA
Detected Semivolatile Organ	ics	_,,,,,	1,000	.,	.,===		1,0000	.,			
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		39 J	41 J	24	NA	NA	1.0 J	<10 [<10]	<4.2	NA	NA
2-Methylphenol 2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
4-Methylphenol		NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<20	<220	4.2 J	NA	NA	<0.80	<10 [<10]	<4.2	NA	NA
Acenaphthylene		<19	<220	2.3 J	NA	NA	<0.80	<10 [<10]	<4.2	NA	NA
Anthracene Benzo(a)anthracene	50 0.002	<25 <30	<220 <220	<4.3 <4.3	NA NA	NA NA	<1.0 <1.0	<10 [<10] <10 [<10]	<4.2 <4.2	NA NA	NA NA
Benzo(a)pyrene	0.002	<27	<220	<4.3	NA NA	NA	<1.0	<10 [<10]	<4.2	NA NA	NA
Benzo(b)fluoranthene	0.002	<38	<220	<4.3	NA	NA	<2.0	<10 [<10]	<4.2	NA	NA
Benzo(g,h,i)perylene		<26	<220	<4.3	NA	NA	<1.0	<10 [<10]	<4.2	NA	NA
Benzo(k)fluoranthene	0.002	<23	<220	<4.3	NA	NA	<0.90	<10 [<10]	<4.2	NA	NA
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Butylbenzylphthalate Detected Semivolatile Organ	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<24	<220	<4.3	NA NA	NA NA	<1.0	<10 [<10]	<4.2	NA NA	NA NA
Dibenzo(a,h)anthracene		<34	<220	<4.3	NA	NA	<1.0	<10 [<10]	<4.2	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate Di-n-Octylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylpntnalate Fluoranthene	50 50	NA <27	NA <220	NA <4.3	NA NA	NA NA	NA <1.0	NA <10 [<10]	NA <4.2	NA NA	NA NA
Fluorene	50	<19	<220	2.2 J	NA	NA	<0.80	<10 [<10]	<4.2	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<29	<220	<4.3	NA	NA	<1.0	<10 [<10]	<4.2	NA	NA
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	920	1,000	630 D	1,300	NA	28	4.8 J [5.4 J]	1.5 J	32	NA
Phenanthrene	50	<16	<220	<4.3	NA	NA	<0.70	<10 [<10]	<4.2	NA	NA
Phenol	1	NA -25	NA -220	NA 14.2	NA NA	NA NA	NA 11.0	NA -10 [-10]	NA 14.2	NA NA	NA NA
Pyrene Total PAHs	50	<25 960 J	<220 1.000 J	<4.3 NA	NA NA	NA NA	<1.0 29 J	<10 [<10] 4.8 J [5.4 J]	<4.2 1.5 J	NA NA	NA NA
Total SVOCs		960 J	1,000 J	NA NA	NA NA	NA NA	29 J	4.8 J [5.4 J]	1.5 J	NA NA	NA NA
. 5.6.1 0 7 0 0 0	· -	550 5	1,000 0	14/7	14/7	14/7	200	7.00 [0.7 0]	1.00	14/7	14/7

	NIVEDEC TOOS 4.4.4				, NEW TOR						
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance			MW-27S					N-27D		
Date Collected:	Values	01/31/06	03/25/08	12/07/10	02/27/13	03/04/13	02/02/06	03/25/08	12/07/10	02/27/13	03/04/13
Detected Pesticides 4,4'-DDD	0.0	NIA	NA	I NIA	NA	NA	NA	N/A	NA	NA	NIA.
4,4'-DDE	0.3 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
Aldrin	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC Delta-BHC		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Endrin Aldehyde	0 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-BHC (Lindane)	0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics	1	NIA.	N/ A	N: A	N1 A	N/A	N/A	L 514	N1 A	h 1 A	h 1 h
Aluminum	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	1,000	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Beryllium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium Detected Inorganics	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Cyanide	200	18.6	NA	NA NA	190	NA	19.0	NA NA	NA	230	NA
Cyanide, Available		<2	NA	NA	24	NA	<2	NA	NA	58	NA
Iron	300	NA	NA	NA	NA	52.2 B	NA	NA	NA	NA	79.4 B
Lead	25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium Manganese	300	NA NA	NA NA	NA NA	12.4 B	NA NA	NA NA	NA NA	NA NA	65.0	NA NA
Mercury	0.7	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Silver Sodium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium		NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered											
Iron Manganese	300 300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	300	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	4,300	NA	NA	NA	NA	60,000	NA
BOD		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide by Headspace		NA	NA	NA	119	NA	NA	NA	NA	32,500	NA
Carbon monoxide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbonate, CaCO3 COD		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride	250,000	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
DOC Average Quads		NA	NA	NA	NA	16,400	NA	NA	NA	NA	31,200
Hardness, Ca/CO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferric		NA	NA	NA NA	NA NA	<200	NA	NA NA	NA NA	NA NA	<200
Iron, Ferrous Methane		NA NA	NA NA	NA NA	NA 913	87 B NA	NA NA	NA NA	NA NA	NA 1,780	69 B NA
Nitrate + Nitrite (as N)		NA <8	NA NA	NA NA	420	NA NA	<4,000	NA NA	NA NA	280	NA NA
Nitrate Nitrogen	10,000	NA	NA	NA	420	NA	NA	NA NA	NA	280	NA
Nitrite Nitrogen	1,000	NA	NA	NA	<10	NA	NA	NA	NA	<10	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate Oxygen		NA NA	NA NA	NA NA	67 B NA	NA NA	NA NA	NA NA	NA NA	51 B NA	NA NA
pH		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sulfate	250,000	124,000	NA NA	NA NA	87,800	NA NA	758,000	NA NA	NA NA	794,000	NA NA
Sulfide	50	NA NA	NA	NA	26,000	NA	NA	NA	NA	60,000	NA
TOC Average Quads		NA	NA	NA	17,200	NA	NA	NA	NA	37,000	NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1										
Location ID:	Water Guidance			MW-28S					MW-28D		
Date Collected:	Values	01/31/06	03/25/08	12/07/10	02/27/13	03/04/13	02/03/06	03/25/08	12/07/10	02/27/13	03/04/13
Detected Volatile Organics											
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane 1,1-Dichloroethane	1 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Hexanone	50	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	1	23	26	46	34	NA	610	97 J	200	850	NA
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform Bromomethane	50 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5	6.2	6.9	10	13	NA	<5.0	<10	<10	<5.0	NA
Methylene Chloride	5	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Styrene Tetrachloroethene	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	5	NA 24	NA 21	16	19	NA NA	2.1 J	0.67 J	<10	<5.0	NA NA
Trichloroethene	5	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	23	18 J	19	31	NA	5.8 J	<10 J	<10	<5.0	NA
Total BTEX		76	72 J	91	96	NA	620 J	98 J	200	850	NA
Total VOCs		76	72 J	91	96	NA	620 J	98 J	200	850	NA
Detected Semivolatile Organ											
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol 2-Chloronaphthalene	10 10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene		3.0 J	1.9 J	1.3 J	NA NA	NA NA	<0.60	1.4 J	<8.4	NA NA	NA NA
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5	NA 0.00	NA 0.00 I	NA 0.07 I	NA NA	NA	NA 0.00	NA 40	NA 0.4	NA NA	NA
Acenaphthene Acenaphthylene	20	<0.80 <0.80	0.38 J 0.36 J	0.37 J <4.2	NA NA	NA NA	<0.80	<10 <10	<8.4 <8.4	NA NA	NA NA
Anthracene	50	<1.0	<10	<4.2	NA NA	NA	<1.0	<10	<8.4	NA NA	NA NA
Benzo(a)anthracene	0.002	<1.0	<10	<4.2	NA	NA	<1.0	<10	<8.4	NA	NA
Benzo(a)pyrene	0	<1.0	<10	<4.2	NA	NA	<1.0	<10	<8.4	NA	NA
Benzo(b)fluoranthene	0.002	<2.0	<10	<4.2	NA	NA	<2.0	<10	<8.4	NA	NA
Benzo(g,h,i)perylene		<1.0	<10	<4.2	NA	NA	<1.0	<10	<8.4	NA	NA
Benzo(k)fluoranthene	0.002	<0.90	<10	<4.2	NA NA	NA	<0.90	<10	<8.4	NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	5 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Semivolatile Organ		14/4	14/4	INA	INA	14/4	INA	14/4	14/4	INA	14/4
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<10	<4.2	NA NA	NA	<1.0	<10	<8.4	NA	NA
Dibenzo(a,h)anthracene		<1.0	<10	<4.2	NA	NA	<1.0	<10	<8.4	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate Di-n-Octylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylpntnalate Fluoranthene	50	NA <1.0	NA <10	NA <4.2	NA NA	NA NA	NA <1.0	NA <10	NA <8.4	NA NA	NA NA
Fluoranmene	50	1.0 J	0.70 J	0.63 J	NA NA	NA NA	<0.80	<10	<8.4	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<10	<4.2	NA	NA	<1.0	<10	<8.4	NA	NA
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	26	15	14	32	NA	0.70 J	<10	<8.4	<25	NA
Phenanthrene	50	<0.70	0.35 J	0.35 J	NA	NA	<0.70	<10	<8.4	NA	NA
Phenol	1	NA 1.0	NA 40	NA 4.0	NA	NA	NA	NA 40	NA 0.4	NA	NA
Pyrene Total PAHs	50	<1.0 30 J	<10 19 J	<4.2 17 J	NA NA	NA NA	<1.0 0.70 J	<10 1.4 J	<8.4 <8.4	NA NA	NA NA
Total SVOCs		30 J	19 J	17 J	NA NA	NA NA	0.70 J	1.4 J	<8.4 <8.4	NA NA	NA NA
10(0) 3 7 0 0 5	<u> </u>	JU J	197	1/J	INA	INA	0.70 J	1.4 J	<0.4	INA	INA

			3	YRACUSE, N	IEW TORK						
l	NYSDEC TOGS 1.1.1								1414 00D		
Location ID: Date Collected:	Water Guidance Values	01/31/06	03/25/08	MW-28S 12/07/10	02/27/13	03/04/13	02/03/06	03/25/08	MW-28D 12/07/10	02/27/13	03/04/13
Detected Pesticides	•			•			•	•	•		
4,4'-DDD	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT Aldrin	0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-BHC	0.01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	0.05	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beta-BHC		NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Delta-BHC		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan I		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldahada	0	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Endrin Aldehyde Gamma-BHC (Lindane)	5 0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor	0.04	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Heptachlor Epoxide	0.03	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Methoxychlor	35	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Detected Inorganics											
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics											
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA 04.7	NA NA	NA NA	NA 470	NA NA	NA 0.50 D	NA NA	NA NA	77.0	NA NA
Cyanide Available	200	81.7	NA NA	NA NA	170 5.4	NA NA	8.50 B 4	NA NA	NA NA	110	NA NA
Cyanide, Available Iron	300	<2 NA	NA NA	NA NA	NA	56.8 B	NA	NA NA	NA NA	128	65.4 B
Lead	25	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Magnesium		NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Manganese	300	NA	NA	NA	2.50 B	NA	NA	NA	NA	147	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	2,000	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Zinc Detected Inorganics-Filtered		NA	INA	NA	NA	NA	NA	NA	INA	NA	NA
	300	NA	NIA	NA	NA	NA	NA	NA	NA	NA	NA
Iron Manganese	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous	300	INA	INA	INA	INA	INA	IVA	IVA	INA	INA	INA
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA NA	NA	1,900	NA	NA NA	NA NA	NA NA	187,000	NA
BOD		NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
Carbon Dioxide by Headspace		NA	NA	NA	<100	NA	NA	NA	NA	49,000	NA
Carbon monoxide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COD		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DOC Average Quads		NA	NA NA	NA NA	NA NA	7,000	NA NA	NA NA	NA NA	NA	77,100
Hardness, Ca/CO3		NA NA	NA NA	NA NA	NA NA	NA -200	NA NA	NA NA	NA NA	NA NA	NA -200
Iron, Ferric Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	<200 34 B	NA NA	NA NA	NA NA	NA NA	<200 96 B
Methane		NA NA	NA NA	NA NA	340	NA	NA NA	NA NA	NA NA	1,450	NA NA
Nitrate + Nitrite (as N)		<8	NA NA	NA NA	59 B	NA NA	<4,000	NA NA	NA NA	230	NA NA
Nitrate Nitrogen	10,000	NA	NA NA	NA	59 B	NA	NA	NA NA	NA NA	230	NA
Nitrite Nitrogen	1,000	NA	NA NA	NA	<10	NA	NA NA	NA NA	NA	<10	NA
Oil and Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Orthophosphate		NA	NA	NA	55 B	NA	NA	NA	NA	36 B	NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	277,000	NA	NA	116,000	NA	219,000	NA	NA	30,500	NA
Sulfide	50	NA	NA	NA	4,600	NA	NA	NA	NA	176,000	NA
TOC Average Quads		NA	NA	NA	7,900	NA	NA	NA	NA	99,400	NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	NYSDEC TOGS 1.1.1								
Location ID:	Water Guidance		MW-				MW-30		
Date Collected:	Values	02/06/06	05/11/06	08/16/06	11/16/06	02/08/06	05/12/06	08/17/06	11/17/06
Detected Volatile Organics 1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone 4-Methyl-2-pentanone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	1	<0.40	<0.40	<0.40	<0.40	5.3	1.3 J [1.3 J]	1.4 J	1.6 J
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane Carbon Disulfide	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide Chlorobenzene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	7	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5	<1.0	<1.0	<1.0	<1.0	15	4.1 J [4.2 J]	3.6 J	3.4 J
Methylene Chloride	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Styrene Tetrachloroethene	5 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	5	<0.30	<0.30	<0.30	<0.30	10	0.69 J [0.66 J]	0.61 J	0.57 J
Trichloroethene	5	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
Vinyl Chloride	2	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	5	2.2 J	<1.0	<1.0	<1.0	74	48 [47]	29	26
Total BTEX		2.2 J	<1.0	<1.0	<1.0	100	54 J [53 J]	35 J	32 J
Total VOCs Detected Semivolatile Organ	inc	2.2 J	<1.0	<1.0	<1.0	100	54 J [53 J]	35 J	32 J
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		<0.60	<0.60	< 0.70	<0.80	41 J	64 J [66 J]	58 J	82 J
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol	 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine 4-Methylphenol	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline	5	NA	NA	NA.	NA	NA NA	NA NA	NA	NA
Acenaphthene	20	<0.80	<0.80	<0.80	<1.0	<8.0	<8.0 [<8.0]	<8.0	<9.0
Acenaphthylene		<0.80	<0.80	<0.80	<1.0	15 J	26 J [27 J]	13 J	31 J
Anthracene	50	<1.0	<1.0	<1.0	<1.0	<10	<10 [<10]	<10	<11
Benzo(a)anthracene	0.002	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <0.60	<12 <11	<12 [<12] <11 [<11]	<12 <11	<8.0 <5.0
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	<2.0	<2.0	<2.0	<1.0	<15	<15 [<15]	<15	<10
Benzo(g,h,i)perylene		<1.0	<1.0	<1.0	<0.40	<10	<10 [<10]	<10	<3.0 J
Benzo(k)fluoranthene	0.002	< 0.90	< 0.90	< 0.90	<1.0	<9.0	<9.0 [<9.0]	<9.0	<10
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ Carbazole	ICS	NA	NA	NA	NA	NA	NA	NA	NA NA
Carbazole Chrysene	0.002	<1.0	NA <1.0	<1.0	<1.0	NA <10	NA <10 [<10]	NA <10	<13
Dibenzo(a,h)anthracene	0.002	<1.0	<1.0	<1.0	<0.30	<13	<13 [<13]	<13	<3.0 J
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate Fluoranthene	50	NA <1.0	NA <1.0	NA <1.0	NA <1.0	NA <11	NA <11 [<11]	NA <11	<10
Fluorene	50	<0.80	<0.80	<0.80	<0.90	<8.0	27 J [25 J]	13 J	26 J
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<1.0	<0.40	<12	<12 [<12]	<12	<3.0 J
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	<0.70	<0.70	<0.70	<0.60	370	670 [690]	440	500
Phenanthrene	50	<0.70	<0.70	<0.70	<0.90	<7.0	31 J [37 J]	18 J	37 J
Phenol Pyrene	1 50	NA <1.0	NA <1.0	NA <1.0	NA <1.0	NA <10	NA <10 [<10]	NA <10	NA <11
Total PAHs	5U 	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <1.0	<10 430 J	820 J [850 J]	<10 540 J	<11 680 J
Total SVOCs		<2.0	<2.0	<2.0	<1.0	430 J	820 J [850 J]	540 J	680 J
							[0]		

			011111000	E, NEW TORK	<u> </u>				
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance		MW-	305			MW-30	חח	
Date Collected:		02/06/06	05/11/06	08/16/06	11/16/06	02/08/06	05/12/06	08/17/06	11/17/06
Detected Pesticides									
4,4'-DDD	0.3	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
4,4'-DDE 4,4'-DDT	0.2 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aldrin	0.2	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC Delta-BHC		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I		NA	NA	NA	NA	NA	NA NA	NA	NA
Endosulfan II		NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA	NA	NA
Endrin Endrin Aldehyde	0 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-BHC (Lindane)	0.05	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA	NA	NA NA	NA	NA	NA NA	NA	NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor Potostod Inorganies	35	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	25	NA	NA	NA	NA	NA	NA NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium Calcium	5 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics	00								
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	200	225	174	196	131 J	59.8	87.4 [74.7]	5.60 B	135 J
Cyanide, Available	300	5 NA	NA NA	NA NA	NA NA	<2 NA	NA NA	NA NA	NA NA
Iron Lead	25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium		NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium Selenium	10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	50	NA	NA	NA	NA	NA	NA NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA NA	NA	NA	NA	NA	NA NA	NA	NA
Zinc Detected Inorganics-Filtered	2,000	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA
Detected Miscellaneous									
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	NA	NA	NA	NA	NA
Carbon Diavida by Headenace		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Dioxide by Headspace Carbon monoxide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbonate, CaCO3		NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COD		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA	NA
DOC Average Quads		NA NA	NA	NA	NA	NA	NA NA	NA	NA
Hardness, Ca/CO3 Iron, Ferric		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate + Nitrite (as N)		<40	NA	NA	NA	<40	NA	NA	NA
Nitrate Nitrogen	10,000	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA
Nitrite Nitrogen Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Orthophosphate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	344,000	NA	NA	NA	179,000	NA	NA	NA
Sulfide TOC Average Quads	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL DISSUIVED SUIDS	1,000,000	INA	INA	INA	INA	INA	INA	INA	INA

	NYSDEC TOGS 1.1.1										
Location ID:	Water Guidance		MW-	31S				MW-31D			
Date Collected:	Values	02/07/06	05/11/06	08/15/06	11/17/06	02/08/06	05/12/06	08/16/06	11/16/06	03/26/08	12/10/10
Detected Volatile Organics											
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone		NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Hexanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	1	<0.40	<0.40	<0.40	<0.40	6.2 J [<4.0]	4.2 J	4.2 J [<0.40]	4.0 J	NA	4.2 J
Bromodichloromethane	50	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA
Bromoform Bromomethane	50 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide		NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	5	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5	<1.0	<1.0	<1.0	<1.0	61 [47 J]	43	37 [<1.0]	35	NA	21
Methylene Chloride	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Tetrachloroethene Toluene	5 5	NA <0.30	NA <0.30	NA <0.30	NA <0.30	NA os rool	NA 44	NA 16 [<0.30]	NA 16	NA NA	NA 28
Trichloroethene	5	<0.30 NA	<0.30 NA	<0.30 NA	<0.30 NA	85 [90] NA	NA	16 [<0.30] NA	NA	NA NA	NA
Vinyl Chloride	2	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Xylenes (total)	5	<1.0	1.3 J	<1.0	1.2 J	840 [920]	600	440 [<1.0]	410	NA.	270
Total BTEX		<1.0	1.3 J	<1.0	1.2 J	990 J [1,100 J]	690 J	500 J [<1.0]	470 J	NA NA	320 J
Total VOCs		<1.0	1.3 J	<1.0	1.2 J	990 J [1,100 J]	690 J	500 J [<1.0]	470 J	NA	320 J
Detected Semivolatile Organ	nics		•	•			•		•	•	
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA .
2-Methylnaphthalene		<0.60	0.80 J	<0.60	<0.70	860 J [550 J]	760 J	990 J [<0.70]	1,100 J	NA	720 DJ
2-Methylphenol 2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methylphenol		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<0.80	3.0 J	<0.80	2.0 J	<200 [<200]	<160	<160 [<0.80]	<160 J	NA	20 J
Acenaphthylene		<0.80	3.0 J	<0.80	2.0 J	400 J [360 J]	440 J	570 J [<0.80]	540 J	NA	400
Anthracene	50	<1.0	<1.0	<1.0	<1.0	<250 [<250]	<200	<200 [<1.0]	<200 J	NA	6.9 J
Benzo(a)anthracene	0.002	<1.0	<1.0	<1.0	<0.80	<300 [<300]	<240	<240 [<1.0]	<150 J	NA	<43
Benzo(a)pyrene	0	<1.0	<1.0	<1.0	<0.50	<270 [<270]	<220	<220 [<1.0]	<100 J	NA NA	<43
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.002	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<1.0 <0.30	<380 [<380] <260 [<260]	<310 <210	<310 [<2.0] <210 [<1.0]	<190 J <64 J	NA NA	<43 <43
Benzo(k)fluoranthene	0.002	<0.90	<0.90	<0.90	<1.0	<230 [<230]	<180	<180 [<1.0]	<190 J	NA NA	<43
bis(2-Ethylhexyl)phthalate	5	NA.	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA
Butylbenzylphthalate	50	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ	nics										
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<1.0	<1.0	<240 [<240]	<190	<190 [<1.0]	<230 J	NA	<43
Dibenzo(a,h)anthracene		<1.0	<1.0	<1.0	<0.30	<340 [<340]	<270	<270 [<1.0]	<48 J	NA	<43
Dibenzofuran Diethylphthalate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Diethylphthalate Dimethylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate	50	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<1.0	<1.0	<1.0	<1.0	<270 [<270]	<220	<220 [<1.0]	<180 J	NA	<43
Fluorene	50	<0.80	3.0 J	<0.80	2.0 J	<190 [<190]	<150	<150 [<0.80]	<140 J	NA	72
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<1.0	<0.30	<290 [<290]	<230	<230 [<1.0]	<64 J	NA	<43
Isophorone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10	2.0 J	6.0 J	<0.70	4.0 J	9,400 [9,700]	9,500	15,000 [<0.70]	13,000 J	NA	9,000 D
Phenanthrene	50	<0.70	0.80 J	<0.70	<0.80	<160 [<160]	<130	<130 [<0.70]	<140 J	NA	39 J
Phenol Pyrene	1 50	NA -1.0	NA <1.0	NA 1.0	NA <1.0	NA -2501	NA <200	NA <200 [<1.0]	NA <190 J	NA NA	NA <43
Pyrene Total PAHs	50	<1.0 2.0 J	<1.0 17 J	<1.0 <2.0	<1.0 10 J	<250 [<250] 11,000 J [11,000 J]	<200 11,000 J	<200 [<1.0] 17,000 J [<2.0]	<190 J 15,000 J	NA NA	<43 10,000 J
Total SVOCs		2.0 J	17 J	<2.0	10 J	11,000 J [11,000 J]	11,000 J	17,000 J [<2.0]	15,000 J	NA NA	10,000 J
. 5.6. 5 7 6 6 6	l .	2.00	17.0	72.0	100	,000 0 [11,000 0]	11,0000	,000 0 [~2.0]	10,000 0	14/1	.0,000 0

					RACUSE, N						
Location ID:	NYSDEC TOGS 1.1.1 Water Guidance		MW-	31S				MW-31D			
Date Collected:	Values	02/07/06	05/11/06	08/15/06	11/17/06	02/08/06	05/12/06	08/16/06	11/16/06	03/26/08	12/10/10
Detected Pesticides											
4,4'-DDD 4,4'-DDE	0.3 0.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Aldrin	0	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beta-BHC Delta-BHC		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I		NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA
Endosulfan II		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldebude	0 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Aldehyde Gamma-BHC (Lindane)	0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-Chlordane	0.05	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics	1	N/A	N1A	N/A	N/A	N/A	N1A	N14	N1 A	N1 A	N/A
Aluminum	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Antimony Arsenic	25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium		NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
Cadmium	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyanide	200	552	1,040	483	1,030 J	1,470 [1,200]	1,200	411 [187]	496 J	550	199
Cyanide, Available		<2	NA	NA	NA	2	NA	NA	NA	5.30	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese Mercury	0.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	100	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium Thallium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc	2,000	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Detected Inorganics-Filtered			I.						1	l.	
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous	1	h/ *		N/ *	N	h).		114			
Alkalinity, CaCO3		NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA O L O
Available Cyanide BOD		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2 [<2] NA
Carbon Dioxide by Headspace		NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
Carbon monoxide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COD		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Chloride DOC Average Quade	250,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DOC Average Quads Hardness, Ca/CO3		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferric		NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate + Nitrite (as N)		3,320	NA	NA	NA	<8 [<8]	NA	NA	NA	NA	NA
Nitrate Nitrogen	10,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrite Nitrogen Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Orthophosphate		NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Oxygen		NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA
рН		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	713,000	NA	NA	NA	340,000 [344,000]	NA	NA	NA	NA	NA
Sulfide	50	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
TOC Average Quads Total Dissolved Solids	1,000,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	INA	INA	INA	INA	INA	NA	ΝA	INA	INA	INA

	NYSDEC TOGS 1.1.1							
Location ID: Date Collected:	Water Guidance Values	01/30/06	05/10/06	08/16/06	MW-32S 11/15/06	03/27/08	12/09/10	02/26/13
Detected Volatile Organics	values	01/30/00	03/10/00	00/10/00	11/13/00	03/21/06	12/05/10	02/20/13
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA	NA	NA
2-Hexanone	50	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methyl-2-pentanone Acetone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	1	<0.40	<0.40	<0.40	<0.40 [<0.40]	<1.0	1.3 J	<0.50
Bromodichloromethane	50	NA	NA	NA	NA NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide		NA	NA	NA	NA	NA	NA	NA
Chlorobenzene Chloroform	5 7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloromethane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
Ethylbenzene	5	<1.0	<1.0	<1.0	<1.0 [<1.0]	<5.0	<5.0	<1.0
Methylene Chloride	5	NA	NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA
Toluene Trichloroethene	5 5	<0.30 NA	<0.30 NA	<0.30 NA	<0.30 [<0.30] NA	<5.0 NA	<5.0 NA	<1.0 NA
Vinyl Chloride	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Xylenes (total)	5	<1.0	<1.0	<1.0	<1.0 [<1.0]	<5.0	<5.0	<1.0
Total BTEX		<1.0	<1.0	<1.0	<1.0 [<1.0]	<5.0	1.3 J	<1.0
Total VOCs		<1.0	<1.0	<1.0	<1.0 [<1.0]	<5.0	1.3 J	<1.0
Detected Semivolatile Organ	ics							
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA 0.60	NA 0.00	NA 0.70	NA	NA 0.74	NA 0.42 J	NA NA
2-Methylnaphthalene 2-Methylphenol		<0.60 NA	<0.60 NA	<0.70 NA	<0.70 [<0.70] NA	0.71 J NA	0.42 J NA	NA NA
2-Nitrophenol		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
3,3'-Dichlorobenzidine	5	NA	NA	NA	NA NA	NA	NA	NA
4-Methylphenol		NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<0.80	<0.80	<0.80	<0.90 [<0.90]	<11	<4.2	NA
Acenaphthylene Anthracene	 50	<0.80	<0.80	<0.80	<0.80 [<0.80]	<11	<4.2 <4.2	NA NA
Benzo(a)anthracene	0.002	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 [<1.0] <0.80 [<0.80]	<11 <11	<4.2 <4.2	NA NA
Benzo(a)pyrene	0.002	<1.0	<1.0	<1.0	<0.50 [<0.50]	<11	<4.2	NA
Benzo(b)fluoranthene	0.002	<2.0	<2.0	<2.0	<1.0 [<1.0]	<11	<4.2	NA
Benzo(g,h,i)perylene		<1.0	<1.0	<1.0	<0.30 [<0.30]	<11	<4.2	NA
Benzo(k)fluoranthene	0.002	< 0.90	<0.90	<0.90	<1.0 [<1.0]	<11	<4.2	NA
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA NA	NA	NA	NA
Butylbenzylphthalate	50	NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organi Carbazole	ics	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<1.0	<1.0 [<1.0]	<11	<4.2	NA NA
Dibenzo(a,h)anthracene		<1.0	<1.0	<1.0	<0.30 [<0.30]	<11	<4.2	NA.
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	50	NA	NA	NA	NA NA	NA	NA NA	NA
Di-n-Octylphthalate	50 50	NA <1.0	NA <1.0	NA <1.0	NA -1.0 [-1.0]	NA <11	NA <4.2	NA NA
Fluoranthene Fluorene	50 50	<0.80	<0.80	<0.80	<1.0 [<1.0] <0.80 [<0.80]	<11 <11	<4.2 0.38 J	NA NA
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<1.0	<0.30 J [<0.30 J]	<11	<4.2	NA
Isophorone	50	NA NA	NA NA	NA NA	NA	NA	NA	NA
Naphthalene	10	<0.70	<0.70	<0.70	<0.50 [<0.50]	0.77 J	5.8	6.3
	50	1.0 J	<0.70	<0.70	<0.80 [<0.80]	0.89 J	0.31 J	NA
Phenanthrene			NA	NA	NA	NA	NA	NA
Phenol	1	NA						
	1 50	<1.0 1.0 J	<1.0 <2.0	<1.0 <2.0	<1.0 [<1.0] <1.0 [<1.0]	<11 2.4 J	<4.2 6.9 J	NA NA

	NYSDEC TOGS 1.1.1							
Location ID:	Water Guidance				MW-32S			
Date Collected:	Values	01/30/06	05/10/06	08/16/06	11/15/06	03/27/08	12/09/10	02/26/13
Detected Pesticides 4,4'-DDD	0.3	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	0.2	NA	NA	NA	NA	NA	NA	NA
Aldrin	0	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC	0.01	NA	NA	NA	NA NA	NA	NA	NA
Alpha-Chlordane Beta-BHC	0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Delta-BHC		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin	0.004	NA	NA	NA	NA	NA	NA	NA
Endosulfan I		NA	NA	NA	NA	NA	NA	NA
Endosulfan II		NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate Endrin	0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Aldehyde	5	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Gamma-BHC (Lindane)	0.05	NA	NA NA	NA NA	NA NA	NA	NA	NA
Gamma-Chlordane	0.05	NA	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide	0.03	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor Detected Inorganics	35	NA	NA	NA	NA	NA	INA	INA
Aluminum		NA	NA	NA	NA	NA	NA	NA
Antimony	3	NA	NA	NA	NA NA	NA NA	NA NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA	NA	NA NA	NA NA	NA NA	NA
Cadmium Calcium	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Inorganics								
Cobalt		NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA
Cyanide	200	245	114	194	239 J [253 J]	NA	NA	450
Cyanide, Available Iron	300	<2 NA	NA NA	NA NA	NA NA	NA NA	NA NA	11 605
Lead	25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Magnesium		NA	NA	NA	NA NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	124
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Potassium Selenium	10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA
Thallium		NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	NA	NA	NA	NA	NA	NA	NA
Detected Inorganics-Filtered Iron	300	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Detected Miscellaneous								
Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA	NA	NA	NA	NA	NA	1,600
BOD		NA	NA	NA NA	NA NA	NA NA	NA	NA 400
Carbon Dioxide by Headspace Carbon monoxide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<100 NA
Carbonate, CaCO3		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
COD		NA	NA	NA	NA	NA	NA	NA
Chloride	250,000	NA	NA	NA	NA	NA	NA	NA
DOC Average Quads		NA	NA	NA	NA NA	NA	NA	NA
Hardness, Ca/CO3 Iron, Ferric		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferrous		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		NA	NA	NA	NA	NA	NA	<10
Nitrate + Nitrite (as N)		<8	NA	NA	NA	NA	NA	150
Nitrate Nitrogen	10,000	NA	NA	NA	NA	NA	NA	110
Nitrite Nitrogen Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	43 NA
Oil and Grease Orthophosphate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	21 B
Oxygen		NA	NA	NA	NA NA	NA NA	NA NA	NA NA
pH		NA	NA	NA	NA NA	NA	NA	NA
Sulfate	250,000	366,000	NA	NA	NA	NA	NA	744,000
Sulfide	50	NA	NA	NA	NA	NA	NA	1,400 B
TOC Average Quads		NA	NA	NA	NA	NA	NA	14,900
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA

Location ID:	NYSDEC TOGS 1.1.1 Water Guidance				MV	/-32D				MW-33S	MW-33D	MW-36S	MW-36D
Date Collected:	Values	01/26/06	05/11/06	08/15/06	08/22/06	11/14/06	03/27/08	12/09/10	02/26/13	02/01/06	01/25/06	02/28/13	02/28/13
Detected Volatile Organics												•	
1,1,1-Trichloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane 2-Butanone	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Hexanone	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
4-Methyl-2-pentanone		NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	1	1,100	1,200	910	1,300	540	970 [960]	1,000	610	<0.00040	0.64 J	0.93	22
Bromodichloromethane	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide Chlorobenzene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloromethane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Dibromochloromethane	50	NA.	NA NA	NA.	NA.	NA.	NA NA	NA NA	NA	NA	NA.	NA NA	NA NA
Ethylbenzene	5	<20	<10	<5.0	<10	<5.0	6.1 J [4.0 J]	9.9 J	7.7	<0.0010	<1.0 H	1.4	150
Methylene Chloride	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5	310	68	68	140	7.9 J	66 [65]	110	59	<0.00030	0.52 J	<1.0	340
Trichloroethene Vinyl Chloride	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Xylenes (total)	<u>2</u> 5	50 J	67	60	140	16 J	74 [69]	120	68	<0.0010	1.2 J	0.70 J	1,500
Total BTEX		1,500 J	1,300	1,000	1,600	560 J	1,100 J [1,100 J]	1,200 J	740	<0.0010	2.4 J	3.0 J	2,100
Total VOCs		1,500 J	1,300	1,000	1,600	560 J	1,100 J [1,100 J]	1,200 J	740	<0.0010	2.4 J	3.0 J	2,100
Detected Semivolatile Organ	nics	,	,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,		,,						
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		<0.60	<0.60	<6.0	<0.70	<0.60	<10 [<10]	<4.0	NA	<0.00060	<0.60	NA	NA
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine 4-Methylphenol	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Acenaphthene	20	<0.80	<0.80	<8.0	<0.80	<0.80	<10 [<10]	<4.0	NA	<0.00080	<0.80	NA NA	NA NA
Acenaphthylene		<0.80	<0.80	<8.0	<0.80	<0.80	<10 [<10]	<4.0	NA	<0.00080	<0.80	NA	NA
Anthracene	50	<1.0	<1.0	<10	<1.0	<1.0	<10 [<10]	<4.0	NA	< 0.0010	<1.0	NA	NA
Benzo(a)anthracene	0.002	<1.0	<1.0	<12	<1.0	<0.80	<10 [<10]	<4.0	NA	<0.0010	<1.0	NA	NA
Benzo(a)pyrene	0	<1.0	<1.0	<11	<1.0	< 0.50	<10 [<10]	<4.0	NA	< 0.0010	<1.0	NA	NA
Benzo(b)fluoranthene	0.002	<2.0	<2.0	<15	<2.0	<1.0	<10 [<10]	<4.0	NA	<0.0020	<2.0	NA	NA NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<1.0 <0.90	<1.0 <0.90	<10 <9.0	<1.0 <0.90	<0.30 <0.90	<10 [<10] <10 [<10]	<4.0 <4.0	NA NA	<0.0010	<1.0 <0.90	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	5	<0.90 NA	<0.90 NA	NA	<0.90 NA	<0.90 NA	×10 [<10] NA	NA	NA NA	NA	<0.90 NA	NA NA	NA NA
Butylbenzylphthalate	50	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Detected Semivolatile Organ				•				1					
Carbazole		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<1.0	<1.0	<10	<1.0	<1.0	<10 [<10]	<4.0	NA	<0.0010	<1.0	NA	NA
Dibenzo(a,h)anthracene		<1.0	<1.0	<13	<1.0	<0.20 J	<10 [<10]	<4.0	NA	<0.0010	<1.0	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate Di-n-Butylphthalate	50 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate Di-n-Octylphthalate	50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	50	<1.0	<1.0	<11	<1.0	<0.90	<10 [<10]	<4.0	NA	<0.0010	<1.0	NA NA	NA NA
Fluorene	50	<0.80	<0.80	<8.0	<0.80	<0.70	<10 [<10]	<4.0	NA	<0.00080	<0.80	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	<1.0	<1.0	<12	<1.0	<0.30	<10 [<10]	<4.0	NA	< 0.0010	<1.0	NA	NA
Isophorone	50	NA	NA	NA	NA	NA	ŇÁ	NA	NA	NA	NA	NA	NA
Naphthalene	10	<0.70	4.0 J	<7.0	7.0 J	2.0 J	2.5 J [2.8 J]	<4.0	12	<0.00070	<0.70	4.7 J	8,700
Phenanthrene	50	<0.70	<0.70	<7.0	<0.70	<0.70	<10 [<10]	<4.0	NA	<0.00070	<0.70	NA	NA
Phenol	1	NA 1.0	NA 1.0	NA 40	NA 1.0	NA 4.0	NA 10 [10]	NA 4.0	NA	NA	NA 1.0	NA	NA
Pyrene Total BAHa	50	<1.0	<1.0 4.0 J	<10 <15	<1.0 7.0 J	<1.0	<10 [<10]	<4.0	NA NA	<0.0010	<1.0	NA NA	NA NA
Total PAHs Total SVOCs		<2.0 <2.0	4.0 J	<15 <15	7.0 J	2.0 J 2.0 J	2.5 J [2.8 J]	<4.0 <4.0	NA NA	<0.0020	<2.0 <2.0	NA NA	NA NA
TOTAL SYOUS		<2.U	4.U J	<15	1.U J	∠.U J	2.5 J [2.8 J]	<4.0	INA	<0.0020	<2.0	INA	INA

March March March Gold Gold		NVCDEC TOCC 4 4 4												
Description		NYSDEC TOGS 1.1.1 Water Guidance				MW	/-32D				MW-33S	MW-33D	MW-36S	MW-36D
## 64-000			01/26/06	05/11/06	08/15/06	08/22/06	11/14/06	03/27/08	12/09/10	02/26/13			02/28/13	02/28/13
## ACDET 0.2 NAP NA														
## 42-07T														
Algorithm														
Apple Christophore 0.05														
Bells BFC	Alpha-BHC	0.01	NA	NA	NA	NA	NA							
Debies D														
Deletin														
Endosullan														
Endosulation Sulates														
Endrin O NA														
Endring Algebryse														
Gamma-BHC (Lindane)														
Gammar-Chloridarie 0.65 NA NA NA NA NA NA NA N														
Highgachfor D.94														
Hightonic Feoride														
Detected Inorganics														
Aluminum														
Affinnony 3 NA														
Arsenic														
Barlum														
Beryllium														
Cadrium		·												
Calcium														
Detected Inorganics														
Cobe	Chromium	50	NA	NA	NA	NA	NA							
Copper														
Cyanide														
Cyanide, Available														
India														
Lead														
Manganese 300														
Mercury	Magnesium													
Nicker 100														<15.0
Potassium														
Selenium														
Silver														
Thallium														
Vanadium														
Zinc														
Detected Inorganics-Filtered Iron														
Iron		2,000	NA	INA	NA	INA	INA	INA	INA	NA	NA	NA	INA	NA
Manganese 300 NA NA NA NA NA NA NA		300	NΔ	NΔ	NΔ	NΔ	NΔ							
Detected Miscellaneous														
Available Cyanide		<u> </u>						L.						
BOD	Alkalinity, CaCO3	<u> </u>		NA	NA	NA		NA	NA	NA	NA	NA		
Carbon Dioxide by Headspace NA <														8,200
Carbon monoxide NA														
Carbonate, CaCO3 NA														
COD NA														
DOC Average Quads NA														
Hardness, Ca/CO3	Chloride	250,000	NA	NA	NA	NA								
Iron, Ferric NA														23,500
Iron, Ferrous NA														
Methane NA NA NA NA NA NA NA 4,850 NA NA 8.2 JB 259 Nitrate + Nitrite (as N) <80														
Nitrate + Nitrite (as N) <80 NA NA NA NA NA NA 430 1.95 <2,000 550 1,800 Nitrate Nitrogen 10,000 NA														
Nitrate Nitrogen 10,000 NA NA <td></td> <td>1,800</td>														1,800
	Nitrate Nitrogen		NA	430	NA	NA	540	1,000						
IOII and Grease I NA	Nitrite Nitrogen									4 B				750
	Oil and Grease		NA	NA	NA	NA	NA							
														61 B
Oxygen NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
														379,000
														60,000
TOC Average Quads NA NA NA NA NA NA NA NA Q2,500 NA NA NA NA														
		1,000,000	NA	NA	NA	NA	NA							

Laastian ID.	NYSDEC TOGS 1.1.1	TMW 40DD	TMW 4000	TMM 4000	TMM/ 400	TMW 46D	TMM 470	TMW 47D4	TMW-17D2	TMM 40D4	TMW 4000	TMM/ 40D4	TMW-19D2
Location ID: Date Collected:	Water Guidance Values	TMW-10DR 05/31/01	05/31/01	05/31/01	TMW-16S 10/31/00	TMW-16D 10/31/00	06/04/01	06/04/01	06/04/01	06/01/01	06/01/01	06/01/01	05/30/01
Detected Volatile Organics	values	03/31/01	03/31/01	03/31/01	10/31/00	10/31/00	00/04/01	00/04/01	00/04/01	00/01/01	00/01/01	00/01/01	03/30/01
1,1,1-Trichloroethane	5	<0.10	<0.10	< 0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	< 0.040	<0.010
1,1,2,2-Tetrachloroethane	5	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
1,1,2-Trichloroethane	1	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	<0.040	<0.010
1,1-Dichloroethane	5	0.015	0.0040	< 0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	< 0.040	<0.010
2-Butanone		<0.10	<0.10	< 0.010	<0.010	0.0090 J	<0.010	<0.010	< 0.050	<0.010	< 0.20	<0.040	<0.010
2-Hexanone	50	<0.10	<0.10	< 0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	< 0.040	<0.010
4-Methyl-2-pentanone		<0.10	<0.10	< 0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	<0.040	<0.010
Acetone	50	0.061	0.14	0.0070	<0.010	0.079	0.011	0.010	0.10	0.014	0.15	0.019	0.0040
Benzene	1	0.95	1.3	0.0090	<0.010	0.20	0.00080	0.011	0.68	0.0080	1.9	0.071	0.0060
Bromodichloromethane	50	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Bromoform Bromomethane	50 5	<0.10 <0.10	<0.10 <0.10	<0.010 <0.010	<0.010 <0.010	<0.020 <0.020	<0.010 <0.010	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.20 <0.20	<0.040 <0.040	<0.010 <0.010
Carbon Disulfide		<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	0.00050	<0.050	0.00030	<0.20	<0.040	<0.010
Chlorobenzene	5	<0.10	0.0020	0.00020	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Chloroform	7	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Chloromethane		<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	< 0.050	<0.010	<0.20	<0.040	<0.010
Dibromochloromethane	50	<0.10	<0.10	<0.010	< 0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Ethylbenzene	5	0.19	0.12	0.0020	<0.010	0.0040 J	0.00030	0.0020	0.019	0.0030	0.0090	0.21	0.0010
Methylene Chloride	5	0.053	0.016	0.0030	0.00050 J	0.017 J	0.00070	0.00040	0.023	0.0030	0.081	0.061	0.0030
Styrene	5	0.69	0.44	0.0060	<0.010	<0.020	<0.010	0.0030	< 0.050	0.0020	< 0.20	0.014	<0.010
Tetrachloroethene	5	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Toluene	5	1.9	1.8	0.015	<0.010	0.11	0.00070	0.019	0.75	0.013	0.057	0.37	0.0020
Trichloroethene	5	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	0.00030
Vinyl Chloride	2	<0.10	<0.10	<0.010	<0.010	<0.020	<0.010	<0.010	<0.050	<0.010	<0.20	<0.040	<0.010
Xylenes (total)	5	2.6	1.8	0.033	<0.010	0.055	0.0010	0.023	0.29	0.025	0.17	1.3	0.0050
Total BTEX Total VOCs		5.6 6.5	5.0 5.6	0.059 0.075	<0.010 0.00050 J	0.37 J 0.47 J	0.0028 0.015	0.055 0.069	1.7 1.9	0.049 0.068	2.1 2.4	2.0	0.014 0.021
Detected Semivolatile Organi		6.5	5.0	0.075	0.00050 J	0.47 J	0.015	0.069	1.9	0.000	2.4	2.1	0.021
2,4-Dimethylphenol	50	0.55	1.2	0.0040	<0.011	0.72	0.0060	0.0070	0.36	0.032	1.0	<0.11	<0.011
2,4-Dinitrophenol	10	<5.3	<2.7	<0.11	<0.011	<0.50	<0.025	<0.25	<0.50	<0.040	<0.50	<0.11	<0.011
2-Chloronaphthalene	10	<2.1	<1.1	<0.043	<0.020	<0.20	<0.023	<0.23	<0.20	<0.10	<0.20	<0.11	<0.020
2-Methylnaphthalene		0.90	0.14	0.020	<0.011	0.0060 J	0.0040	0.025	<0.20	0.030	<0.20	0.14	<0.011
2-Methylphenol		<2.1	<1.1	<0.043	<0.011	0.51	0.0050	0.0090	0.58	0.011	0.10	<0.11	<0.011
2-Nitrophenol		<2.1	<1.1	< 0.043	<0.011	<0.20	< 0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
3,3'-Dichlorobenzidine	5	<2.1	<1.1	< 0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
4-Methylphenol		0.56	0.83	0.0030	<0.011	0.77	0.015	0.015	0.80	0.019	0.046	0.0080	<0.011
4-Nitroaniline	5	<5.3	<2.7	<0.11	<0.026	<0.50	< 0.025	<0.25	< 0.50	< 0.040	< 0.50	<0.26	<0.026
Acenaphthene	20	<2.1	<1.1	0.0010	<0.011	<0.20	0.0050	<0.10	<0.20	0.0020	<0.20	0.0040	<0.011
Acenaphthylene		0.45	0.078	0.0090	<0.011	0.0020 J	0.0080	0.0080	<0.20	0.010	<0.20	0.027	<0.011
Anthracene	50	<2.1	<1.1	0.00070	<0.011	<0.20	0.0070	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Benzo(a)anthracene	0.002	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Benzo(a)pyrene	0	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Benzo(b)fluoranthene	0.002	<2.1 <2.1	<1.1 <1.1	<0.043	<0.011 <0.011	<0.20	<0.010 <0.010	<0.10 <0.10	<0.20	<0.10 <0.10	<0.20	<0.11 <0.11	<0.011
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.002	<2.1	<1.1	<0.043	<0.011	<0.20 <0.20	<0.010	<0.10	<0.20 <0.20	<0.10	<0.20 <0.20	<0.11	<0.011
bis(2-Ethylhexyl)phthalate	5	<2.1	<1.1	0.0020	0.0020 J	<0.20	0.0010	<0.10	<0.20	0.0010	<0.20	<0.11	0.00070
Butylbenzylphthalate	50	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Detected Semivolatile Organi													
Carbazole		0.38	0.047	0.0070	< 0.011	0.0090 J	0.016	0.025	<0.20	0.027	<0.20	0.075	<0.011
Chrysene	0.002	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Dibenzo(a,h)anthracene		<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Dibenzofuran	-	0.11	<1.1	0.0040	<0.011	<0.20	0.0060	0.0040	<0.20	0.0020	<0.20	0.012	<0.011
Diethylphthalate	50	<2.1	<1.1	0.0040	<0.011	<0.20	0.00020	<0.10	<0.20	<0.10	<0.20	<0.11	0.00030
Dimethylphthalate	50	<2.1	<1.1	< 0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Di-n-Butylphthalate	50	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Di-n-Octylphthalate	50	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Fluoranthene	50	<2.1	<1.1	< 0.043	<0.011	<0.20	0.0010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Fluorene	50	0.092	<1.1	0.0040	<0.011	<0.20	0.0060	0.0040	<0.20	0.0020	<0.20	0.0060	<0.011
Indeno(1,2,3-cd)pyrene	0.002	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Isophorone	50	<2.1	<1.1	<0.043	<0.011	<0.20	<0.010	<0.10	<0.20	<0.10	<0.20	<0.11	<0.011
Naphthalene Phenanthrene	10 50	11 0.064	6.3	0.19 0.0040	0.00020 J	0.16 J	0.016 0.0070	0.70 0.0040	0.0080 <0.20	0.31 0.0010	0.0070 <0.20	0.75	<0.011 <0.011
rnenanthrene		0.064	<1.1 0.37	<0.0040	<0.011 0.00030 J	<0.20 0.54	0.0070	0.0040	<0.20	0.0010	<0.20	<0.11	<0.011
Dhonol					ひこいいいろし ま	0.04	UUIS	0.080	1.1	0.019	<0.20	0.073	
Phenol	1 50								-0 20	-0.10	-O 20	∠O 11	-0 011
Phenol Pyrene Total PAHs	50 	<2.1 13	<1.1 6.5	<0.043	0.00030 J 0.00050 J	<0.20 0.17 J	0.0010 0.055	<0.10 0.74	<0.20 0.0080	<0.10 0.36	<0.20 0.0070	<0.11 0.93	<0.011 <0.011

				5	RACUSE, NI	-W TORK							
	NYSDEC TOGS 1.1.1												
Location ID:	Water Guidance		TMW-10D2									TMW-19D1	
Date Collected:	Values	05/31/01	05/31/01	05/31/01	10/31/00	10/31/00	06/04/01	06/04/01	06/04/01	06/01/01	06/01/01	06/01/01	05/30/01
Detected Pesticides		0.000000	0.00040	0.00040	0.000000	0.00040	0.00040	0.00040	0.00040	0.00040	0.00040	0.00040	0.00040
4,4'-DDD 4.4'-DDE	0.3 0.2	0.000020 <0.00010	<0.00010	<0.00010	0.000020 J 0.000056 J	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010	<0.00010	<0.00010	<0.00010 0.0000046	
4,4'-DDT	0.2	0.000016	<0.00010	<0.00010	0.00046	0.000010	<0.00010	0.000000	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Aldrin	0	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	< 0.000050	<0.000050	< 0.000050	<0.000050	
Alpha-BHC	0.01	0.000092	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	< 0.000050	< 0.000050	<0.000050
Alpha-Chlordane	0.05	<0.000050	<0.000050	<0.000050	<0.000050		<0.000050	<0.000050	< 0.000050	<0.000050		<0.000050	
Beta-BHC		<0.000050	<0.000050	<0.000050				<0.000050		<0.000050		<0.000050	
Delta-BHC	0.004	<0.000050	0.000012 <0.00010	<0.000050	<0.00012 J	0.000021 J	<0.000050	<0.000050 <0.00010	<0.000050	<0.000050 <0.00010		<0.000050 <0.00010	<0.000050 <0.00010
Dieldrin Endosulfan I	0.004	<0.00010 <0.000050	<0.00010	<0.00010	<0.00010	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010	0.0000040	<0.00010	<0.00010	<0.00010	
Endosulfan II		<0.00010	<0.00010	<0.00010	<0.00010		<0.00010	<0.00010	<0.00010	<0.00010	<0.000030	<0.00010	<0.000030
Endosulfan Sulfate		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0000030	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Endrin	0	0.000064	<0.00010	<0.00010	<0.00010	0.000037 J	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Endrin Aldehyde	5	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Gamma-BHC (Lindane)	0.05	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.0000050	<0.000050	<0.000050	0.000010	<0.000050	<0.000050
Gamma-Chlordane	0.05	0.000085	<0.000050	<0.000050	<0.000050		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Heptachlor Heptachlor Epoxide	0.04 0.03	<0.000050 0.000053	<0.000050 0.000016	<0.000050	<0.000050 <0.000050		<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	
Methoxychlor	35	<0.00050	0.000010	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Detected Inorganics													
Aluminum		0.296	0.221	<0.410	0.104	0.363	<0.0205	0.295	< 0.370	0.654	0.137	0.200	<0.0205
Antimony	3	<0.00440	<0.00440	<0.0880	<0.00500	<0.00500	<0.00440	<0.00440	<0.0900	<0.00440	<0.00440	<0.00440	<0.00440
Arsenic	25	<0.00420	0.00560	<0.0840	<0.00250	<0.00250	<0.00420	<0.00420	<0.0820	<0.00420	0.00470	<0.00420	<0.00420
Barium	1,000	0.00980	0.847	0.339	0.0412	0.0209	0.0259	0.0141	0.369	0.0196	2.54	0.0350	0.187
Beryllium Cadmium	5	<0.000500 <0.000900	<0.000500 <0.000900	<0.0100 <0.0180	<0.000500		<0.000500 <0.000900	<0.000500	<0.0100 <0.0160	<0.000500	<0.000500	<0.000500 <0.000900	
Calcium		107	85.1	1,450	219	113	209	113	776	187	108	267	81.9
Chromium	50	<0.000800	0.00100	0.0180	0.0199	<0.00100	<0.000800	0.00160	<0.0200	0.00100	<0.000800	<0.000800	
Detected Inorganics													
Cobalt		< 0.00160	< 0.00160	< 0.0320	< 0.00100	< 0.00100	< 0.00160	< 0.00160	< 0.0280	< 0.00160	< 0.00160	< 0.00160	< 0.00160
Copper	200	<0.00160	0.00420	0.0463	0.00290	0.00560	< 0.00160	<0.00160	< 0.0360	0.00430	0.00170	<0.00160	<0.00160
Cyanide	200	<0.0100	<0.0100	<0.0100	0.0994	<0.0100	0.107	<0.0100	0.0618	0.561	0.0910	0.173	0.112
Cyanide, Available		NA 0.450	NA 0.000	NA 44.0	NA 0.0000	NA 0.420	NA 0.0000	NA 0.004	NA 0.40	NA 0.000	NA 4.25	NA 0.464	NA 0.422
Iron Lead	300 25	0.152 <0.00200	0.960 <0.00200	11.2 <0.0400	0.0232 <0.00200	0.138	0.0666 <0.00200	0.284 <0.00200	9.40 < 0.0520	0.660 <0.00200	1.35 <0.00200	0.164 <0.00200	0.133
Magnesium		0.0852	8.01	361	0.0230	0.133	2.61	0.192	112	0.817	15.1	0.0470	18.3
Manganese	300	0.00200	0.0232	0.422	<0.00100	0.00680	0.00140	0.00840	0.302	0.0125	0.0697	<0.00100	0.0698
Mercury	0.7	< 0.000100	< 0.000100	<0.000100	<0.000100	< 0.000100	< 0.000100	0.00120	<0.000100	<0.000100	< 0.000100	< 0.000100	<0.000100
Nickel	100	0.00270	0.00460	<0.0260	0.00160	0.00290	0.00260	0.00300	<0.0300	0.00290	0.00190	0.00360	0.00200
Potassium		17.7	40.3	542	8.76	19.9	14.1	12.6	148	6.64	63.7	20.6	34.7
Selenium Silver	10 50	<0.00490 <0.00100	<0.00490 <0.00100	<0.0980 <0.0200	0.00590 <0.00100	0.00840 <0.00100	<0.00490 <0.00100	<0.00490 <0.00100	<0.0920 <0.0200	<0.0100 <0.00100	<0.00490 <0.00100	<0.00490 <0.00100	<0.00490 <0.00100
Sodium		59.4	444	10,800	19.6	84.6	56.4	47.6	14,100	42.6	2,670	123	452
Thallium		<0.00910	<0.00910	<0.182	<0.00600	<0.00600	<0.00910	<0.00910	<0.184	<0.00910	<0.455	< 0.0150	<0.00910
Vanadium		0.00480	0.0132	<0.0200	0.00400	0.00220	0.00240	0.00240	<0.0180	0.00640	0.00380	0.00240	< 0.00100
Zinc	2,000	< 0.00500	0.00620	<0.100	0.00680	0.0109	<0.00500	<0.00500	0.106	<0.00500	0.00680	< 0.00500	<0.00500
Detected Inorganics-Filtered													
Iron	300	NA	NA	NA	<0.100	<0.100	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	<0.0100	<0.0100	NA	NA	NA	NA	NA	NA	NA
Detected Miscellaneous Alkalinity, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Available Cyanide		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BOD		NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Carbon Dioxide by Headspace		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon monoxide		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonate, CaCO3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COD		NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Chloride DOC Average Quads	250,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hardness, Ca/CO3		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Iron, Ferric		NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Iron, Ferrous		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate + Nitrite (as N)	40.000	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Nitrate Nitrogen	10,000 1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrite Nitrogen Oil and Grease	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Orthophosphate		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxygen		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide	50	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
TOC Average Quads	1,000,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Dissolved Solids	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE. NEW YORK

- 1. Samples were collected by ARCADIS on the dates indicated.
- 2. VOCs = Target Compound List (TCL) Volatile Organic Compounds.
- 3. BTEX = Benzene, toluene, ethylbenzene and xylenes.
- 4. SVOCs = TCL Semi-Volatile Organic Compounds.
- PAHs = Polynuclear aromatic hydrocarbons.
- 6. Inorganics = Target Analyte List (TAL) Metals and Cyanide.
- 7. Samples were analyzed by TestAmerica Laboratories, Inc. (TestAmerica) located in Shelton, Connecticut for:
 - VOCs/BTEX using United States Environmental Protection Agency (USEPA) SW-846 Method 8260.
 - SVOCs/PAHs using USEPA SW-846 Method 8270.
 - Inorganics using USEPA SW-846 Methods 6010, 7471, 9012 and 335.4.
 - Pesticides by USEPA Method 8080.
 - Sulfate (SO₄) using Method 9036.
 - Sulfide using USEPA Method 9031.
 - Nitrite (NO₂) and nitrate (NO₃) using USEPA Method 9200.
 - Biochemical oxygen demand (BOD) using USEPA Method 405.1.
 - Chemical oxygen demand (COD) using USEPA Method 410.1.
 - Carbon dioxide, carbon monoxide, methane and oxygen using AM-15.01.
 - Chloride using USEPA Method 9250.
 - Dissolved organic carbon (DOC) average quads using USEPA Method 9060.
 - Total organic carbon (TOC) using USEPA Method 9060.
- Samples were analyzed by Exygen Research (Exygen) located in State College, Pennsylvania for:
- Cyanide (available) using USEPA OIA 1677.
- 9. Only those constituents detected in one or more samples are summarized.
- 10. Concentrations reported in parts per billion (ppb), which is equivalent to micrograms per liter (ug/L).
- 11. Field duplicate sample results are presented in brackets.
- 12. Data qualifiers are defined as follows:
 - < Constituent not detected at a concentration above the reported detection limit.
 - > Indicates the result was greater than the reported result.
 - B (Inorganic) Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
 - B (Organic) Compound was found in blank
 - D Compound quantitated using a secondary dilution. Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis.
 - E (Inorganic) Serial dilution exceeds the control limits.
 - E (Organic) Result exceeded calibration range; a secondary dilution required.
 - H Alternate peak selection upon analytical review.
 - J Indicates that the associated numerical value is an estimated concentration.
 - M Manually integrated compound.
- 13. NYSDEC groundwater standards/guidance values are from the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1) dated June 1998, revised April 2000 and June 2004.
- 14. Shading designates values that exceed the NYSDEC groundwater quality standards/guidance values.
- 15. -- = No TOGS 1.1.1 Water Quality Standard/Guidance Value listed.
- 16. NA = Not Analyzed.
- 17. Results have been validated in accordance with USEPA National Functional Guidelines of October 1999 and July 2002.

	6 NYO	RR Part 375 SCOs	Imported	Topsoil (Gerbe	er Topsoil)	Onsite Re-	
Locati Date Coll	on ID: Groundw			1 GERBER TS 2 08/24/12	GERBER TS 3 08/24/12	NTS-1C 03/16/12	NTS-10 03/26/1
PCBs							
Aroclor-1016			<0.100	NA	NA	< 0.0400	NA
Aroclor-1221			<0.100	NA	NA	< 0.0400	NA
roclor-1232			<0.100	NA	NA	< 0.0400	NA
Aroclor-1242			<0.100	NA	NA	< 0.0400	NA
Aroclor-1248			< 0.100	NA	NA	< 0.0400	NA
roclor-1254			< 0.100	NA	NA	< 0.0400	NA
roclor-1260			< 0.100	NA	NA	< 0.0400	NA
Aroclor-1262			< 0.100	NA	NA	NA	NA
roclor-1268			< 0.100	NA	NA	NA	NA
otal PCBs			< 0.100	NA	NA	< 0.0400	NA
olatile Organics	*	•	•	•		•	
,1,1,2-Tetrachloroethane			< 0.0051	< 0.0060	< 0.0058	NA	< 0.006
1,1-Trichloroethane	0.68	500	< 0.0051	<0.0060	<0.0058	NA	<0.006
1,2,2-Tetrachloroethane			< 0.0051	<0.0060	<0.0058	NA	< 0.006
1,2-trichloro-1,2,2-trifluoroet			<0.0051	<0.0060	<0.0058	NA.	NA
1,2-Trichloroethane			<0.0051	<0.0060	<0.0058	NA	<0.006
	0.27	240				NA NA	
1-Dichloroethane			<0.0051	<0.0060	<0.0058		<0.006
1-Dichloroethene	0.33	500	<0.0051	<0.0060	<0.0058	NA	<0.006
1-Dichloropropene			<0.0051	<0.0060	<0.0058	NA	<0.006
2,3-Trichlorobenzene			<0.0051	<0.0060	<0.0058	NA	<0.006
,2,3-Trichloropropane			< 0.0051	<0.0060	<0.0058	NA	< 0.006
2,4-Trichlorobenzene			< 0.0051	< 0.0060	<0.0058	NA	<0.006
2,4-Trimethylbenzene	3.6	190	< 0.0051	< 0.0060	<0.0058	NA	<0.006
2-Dibromo-3-chloropropane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
2-Dibromoethane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
2-Dichlorobenzene	1.1	500	<0.0051	<0.0060	<0.0058	NA	<0.006
2-Dichloroethane	0.02	30	<0.0051	<0.0060	<0.0058	NA NA	<0.006
2-Dichloropropane	0.02		<0.0051	<0.0060	<0.0058	NA	<0.006
3,5-Trimethylbenzene	8.4	190	<0.0051	<0.0060	<0.0058	NA NA	<0.006
3-Dichlorobenzene	2.4	280	<0.0051	<0.0060	<0.0058	NA NA	<0.006
	2.4	200	<0.0051	<0.0060	<0.0058	NA NA	<0.006
3-Dichloropropane							
4-Dichlorobenzene	1.8	130	<0.0051	<0.0060	<0.0058	NA	<0.006
4-Dioxane	0.1	130	NA	NA	NA	NA	<0.12
2-Dichloropropane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
-Butanone	0.12	500	< 0.030	< 0.036	< 0.035	NA	< 0.006
Chlorotoluene			<0.0051	<0.0060	<0.0058	NA	<0.006
-Hexanone			< 0.025	< 0.030	< 0.029	NA	<0.006
Isopropyltoluene			< 0.0051	< 0.0060	< 0.0058	NA	NA
-Chlorotoluene			< 0.0051	< 0.0060	< 0.0058	NA	< 0.006
-Methyl-2-pentanone			< 0.025	< 0.030	< 0.029	NA	< 0.006
cetone	0.05	500	< 0.050	< 0.050	< 0.050	NA	<0.006
crylonitrile			< 0.010	< 0.012	< 0.012	NA	NA
enzene	0.06	44	< 0.0051	< 0.0060	<0.0058	NA	<0.006
romobenzene			< 0.0051	< 0.0060	<0.0058	NA	<0.006
romochloromethane			< 0.0051	<0.0060	<0.0058	NA	<0.006
romodichloromethane			<0.0051	<0.0060	<0.0058	NA NA	<0.006
romoform			<0.0051	<0.0060	<0.0058	NA	<0.006
						NA NA	
romomethane			<0.0051	<0.0060	<0.0058		<0.006
arbon Disulfide			<0.0051	<0.0060	<0.0058	NA	<0.006
arbon Tetrachloride	0.76	22	< 0.0051	<0.0060	<0.0058	NA	<0.006
hlorobenzene	1.1	500	< 0.0051	<0.0060	<0.0058	NA	<0.006
hloroethane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
hloroform	0.37	350	< 0.0051	< 0.0060	<0.0058	NA	<0.006
hloromethane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
s-1,2-Dichloroethene	0.25	500	< 0.0051	< 0.0060	<0.0058	NA	<0.006
s-1,3-Dichloropropene			< 0.0051	< 0.0060	<0.0058	NA	<0.006
ibromochloromethane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
ibromomethane			< 0.0051	<0.0060	<0.0058	NA	<0.006
ichlorodifluoromethane			<0.0051	<0.0060	<0.0058	NA.	<0.006
thylbenzene	1	390	<0.0051	<0.0060	<0.0058	NA	<0.006
exachlorobutadiene			<0.0051	<0.0060	<0.0058	NA	<0.006
domethane			NA	NA	NA	NA	<0.006
opropylbenzene			<0.0051	<0.0060	<0.0058	NA NA	<0.006
	0.93	500	<0.010			NA NA	<0.006
ethyl tert-butyl ether		500		<0.012	<0.012 0.0076 SB		
ethylene Chloride	0.05	500	0.010 SB	0.0093 SB		NA NA	<0.006
aphthalene	12	500	<0.0051	<0.0060	<0.0058	NA	<0.006
Butylbenzene	12	500	<0.0051	<0.0060	<0.0058	NA	<0.006
Propylbenzene	3.9	500	< 0.0051	<0.0060	<0.0058	NA	<0.006
Xylene			<0.0051	<0.0060	<0.0058	NA	<0.006
Isopropyltoluene			< 0.0051	< 0.0060	<0.0058	NA	<0.006
ec-Butylbenzene	11	500	< 0.0051	< 0.0060	<0.0058	NA	<0.006
tyrene			< 0.0051	< 0.0060	<0.0058	NA	<0.006
rt-Butylbenzene	5.9	500	< 0.0051	< 0.0060	<0.0058	NA	<0.006
etrachloroethene	1.3	150	<0.0051	<0.0060	<0.0058	NA NA	<0.006
etrahydrofuran	1.3		<0.010	<0.012	<0.012	NA	NA
	0.7	500				NA NA	
oluene			<0.0051	<0.0060	<0.0058		<0.006
ans-1,2-Dichloroethene	0.19	500	<0.0051	<0.0060	<0.0058	NA	<0.006
ans-1,3-Dichloropropene			< 0.0051	<0.0060	<0.0058	NA	<0.006
ans-1,4-Dichloro-2-butene			< 0.010	< 0.012	<0.012	NA	NA
richloroethene	0.47	200	< 0.0051	< 0.0060	<0.0058	NA	<0.006
richlorofluoromethane			< 0.0051	< 0.0060	<0.0058	NA	<0.006
inyl Acetate			NA NA	NA NA	NA NA	NA	<0.006
inyl Chloride	0.02	13	<0.0051	<0.0060	<0.0058	NA	<0.006
ylenes (total)	1.6	500	<0.0051 NA	<0.0060 NA	<0.0056 NA	NA NA	<0.006
yienes (totai) i&p-Xylene	1.6	500	<0.0051	<0.0060	<0.0058	NA NA	<0.006 NA
ICEP-AYIELIE							
otal BTEX			< 0.0051	< 0.0060	< 0.0058	NA	<0.006

	6 NYCRR Pa	rt 375 SCOs	Imported	Topsoil (Gerbe	er Tonsoil)	Onsite Re-	
Location ID:	Protection of Groundwater	Restricted- Commercial			GERBER TS 3	NTS-1C	NTS-1G
Date Collected:	(no exceedances)			08/24/12	08/24/12	03/16/12	03/26/12
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	-		<0.28	NA	NA	NA	NA
1,2,4-Trichlorobenzene			<0.28	NA	NA	<0.41	NA
1,2-Dichlorobenzene	1.1	500	<0.28	NA NA	NA NA	<0.41	NA NA
1,3-Dichlorobenzene	2.4	280	<0.28	NA NA	NA NA	<0.41 <0.41	NA NA
1,4-Dichlorobenzene 2,2´-oxybis(1-Chloropropane)	1.8	130	<0.28 NA	NA NA	NA NA	<0.41	NA NA
2,4,5-Trichlorophenol			<0.28	NA NA	NA NA	<0.82	NA
2,4,6-Trichlorophenol			<0.28	NA NA	NA NA	<0.41	NA
2,4-Dichlorophenol			<0.28	NA NA	NA	<0.41	NA
2,4-Dimethylphenol			<0.28	NA	NA	< 0.41	NA
2,4-Dinitrophenol			< 0.45	NA	NA	< 0.82	NA
2,4-Dinitrotoluene			<0.28	NA	NA	<0.41	NA
2,6-Dinitrotoluene			<0.28	NA	NA	<0.41	NA
2-Chloronaphthalene			<0.28	NA	NA	<0.41	NA
2-Chlorophenol			<0.28	NA	NA	<0.41	NA
2-Methylnaphthalene			<0.28	NA NA	NA NA	<0.41	NA NA
2-Methylphenol	0.33	500	<0.28	NA NA	NA NA	<0.41	NA NA
2-Nitroaniline			<0.45	NA NA	NA NA	<0.82	NA NA
2-Nitrophenol			<0.28	NA NA	NA NA	<0.41	NA NA
3&4-Methylphenol			<0.28 <0.56	NA NA	NA NA	NA <0.41	NA NA
3,3'-Dichlorobenzidine 3-Nitroaniline			<0.56	NA NA	NA NA	<0.41	NA NA
4,6-Dinitro-2-methylphenol			<0.45	NA NA	NA NA	<0.82	NA NA
4-Bromophenyl-phenylether			<0.28	NA NA	NA NA	<0.82	NA NA
4-Chloro-3-Methylphenol			<0.28	NA NA	NA NA	<0.41	NA NA
4-Chloroaniline			<0.56	NA NA	NA NA	<0.41	NA NA
1-Chlorophenyl-phenylether			<0.28	NA NA	NA NA	<0.41	NA.
1-Methylphenol	0.33	500	NA	NA	NA	<0.41	NA
1-Nitroaniline			<0.45	NA	NA	<0.82	NA
I-Nitrophenol			< 0.81	NA	NA	<0.82	NA
Acenaphthene	98	500	<0.28	NA	NA	< 0.41	NA
Acenaphthylene	107	500	<0.28	NA	NA	0.22 J	NA
Acetophenone			<0.28	NA	NA	NA	NA
Aniline			<0.81	NA	NA	NA	NA
Anthracene	1,000	500	<0.28	NA	NA	0.15 J	NA
Azobenzene			<0.28	NA	NA	NA	NA
Benzidine			<0.28	NA	NA	NA	NA
Benzo(a)anthracene	1	5.6	<0.28	NA	NA	0.30 J	NA
Benzo(a)pyrene	22	1	0.14 J	NA	NA	0.33 J	NA
Benzo(b)fluoranthene	1.7	5.6	0.21 J	NA	NA	0.42	NA
Benzo(g,h,i)perylene	1,000	500	0.13 J	NA	NA	0.23 J	NA
Benzo(k)fluoranthene	1.7	56	<0.28	NA	NA	0.23 J	NA
Benzoic Acid			<0.81	NA	NA	NA	NA
ois(2-Chloroethoxy)methane			<0.28	NA	NA	<0.41	NA
ois(2-Chloroethyl)ether			<0.28	NA	NA	<0.41	NA
ois(2-Chloroisopropyl)ether			<0.28	NA	NA	NA	NA
ois(2-Ethylhexyl)phthalate			<0.28	NA NA	NA NA	<0.41	NA NA
Butylbenzylphthalate			<0.28	NA NA	NA NA	<0.41	NA NA
Carbazole	1	56	<0.81	NA NA	NA NA	<0.41	NA NA
Chrysene Dibenzo(a h)anthracene	1,000	0.56	<0.28 <0.28	NA NA	NA NA	0.34 J <0.41	NA NA
Dibenzo(a,h)anthracene Dibenzofuran	210	350	<0.28	NA NA	NA NA	<0.41	NA NA
Diethylphthalate	210		<0.28	NA NA	NA NA	<0.41	NA NA
Dimethylphthalate			<0.28	NA NA	NA NA	<0.41	NA NA
Di-n-Butylphthalate			<0.28	NA NA	NA NA	0.085 J	NA.
Di-n-Octylphthalate			<0.28	NA NA	NA NA	<0.41	NA
Fluoranthene	1,000	500	0.13 J	NA NA	NA NA	0.54	NA
luorene	386	500	<0.28	NA	NA	<0.41	NA
Hexachlorobenzene	3.2	6	<0.28	NA	NA	<0.41	NA
Hexachlorobutadiene	:		<0.28	NA	NA	< 0.41	NA
Hexachlorocyclopentadiene			<0.28	NA	NA	<0.41	NA
Hexachloroethane			<0.28	NA	NA	<0.41	NA
ndeno(1,2,3-cd)pyrene	8.2	5.6	<0.28	NA	NA	0.22 J	NA
sophorone			<0.28	NA	NA	<0.41	NA
Naphthalene	12	500	<0.28	NA	NA	<0.41	NA
Nitrobenzene			<0.28	NA	NA	<0.41	NA
N-Nitrosodimethylamine			<0.28	NA	NA	NA	NA
N-Nitroso-di-n-propylamine			<0.28	NA	NA	<0.41	NA
N-Nitrosodiphenylamine			<0.81	NA	NA	<0.41	NA
Pentachloronitrobenzene			<0.28	NA	NA	NA	NA
Pentachlorophenol	0.8	6.7	<0.28	NA	NA	<0.82	NA
Phenanthrene	1,000	500	<0.28	NA	NA	0.23 J	NA
Phenol	0.33	500	<0.28	NA	NA	<0.41	NA
Pyrene	1,000	500	<0.28	NA	NA	0.45	NA
Pyridine			<0.28	NA	NA	NA NA	NA
Total PAHs			0.61 J 0.61 J	NA NA	NA NA	3.7 J	NA NA

	6 NYCRR Pa	rt 375 SCOs	Imported	Topsoil (Gerbe	er Topsoil)		Jse Topsoil ISS Limits)
Location ID: Date Collected:	Protection of Groundwater (no exceedances)	Restricted- Commercial (no exceedances)			GERBER TS 3 08/24/12		NTS-1G 03/26/12
Pesticides	(110 exceedances)	(110 exceedances)	00/2-//12	00/2-//12	00/24/12	00/10/12	00/20/12
4.4'-DDD	14	92	<0.0014	NA	NA NA	<0.0040	NA
4,4'-DDE	17	62	0.0071	NA NA	NA NA	<0.0040	NA NA
4,4'-DDE 4,4'-DDT	136	47	<0.0071	NA NA	NA NA	<0.0040	NA NA
Aldrin	0.19	0.68	<0.0014	NA NA	NA NA	<0.0040	NA NA
Alpha-BHC	0.02	3.4	<0.0010	NA NA	NA NA	<0.0021	NA NA
Alpha-Chlordane	2.9	24	<0.0010	NA NA	NA NA	<0.0021	NA NA
Beta-BHC	0.09	3	<0.0020	NA NA	NA NA	<0.0021	NA NA
Delta-BHC	0.09	500	<0.0010	NA NA	NA NA	<0.0021	NA NA
Dieldrin			<0.0010	NA NA	NA NA	<0.0021	NA NA
Endosulfan I	0.1 102	1.4 200	<0.0010	NA NA	NA NA	<0.0040	NA NA
				NA NA			NA NA
Endosulfan II	102	200	<0.0020		NA	<0.0040	
Endosulfan Sulfate	1,000	200	<0.0020	NA	NA NA	<0.0040	NA
Endrin	0.06	89	<0.0010	NA	NA NA	<0.0040	NA
Endrin Aldehyde			<0.0020	NA	NA NA	<0.0040	NA
Endrin Ketone			<0.0010	NA	NA NA	<0.0040	NA
Gamma-BHC (Lindane)	0.1	9.2	<0.0010	NA	NA	<0.0021	NA
Gamma-Chlordane			<0.0020	NA	NA	<0.0021	NA
Heptachlor	0.38	15	<0.0010	NA	NA	<0.0021	NA
Heptachlor Epoxide			<0.0010	NA	NA	<0.0021	NA
Methoxychlor			< 0.0040	NA	NA	<0.021	NA
Technical Chlordane			<0.012	NA	NA	NA	NA
Toxaphene			<0.019	NA	NA	<0.21	NA
Herbicides							
2,4,5-T			< 0.050	NA	NA	NA	NA
2,4,5-TP	3.8	500	< 0.050	NA	NA	<0.0044	NA
2,4-D			< 0.050	NA	NA	NA	NA
2,4-DB			< 0.50	NA	NA	NA	NA
Dalapon			< 0.050	NA	NA	NA	NA
Dicamba			<0.10	NA	NA	NA	NA
Dichloroprop			< 0.050	NA	NA	NA	NA
Dinoseb			<0.10	NA	NA	NA	NA
Inorganics							
Aluminum			NA	NA	NA	8,580	NA
Antimony			NA	NA	NA	0.870 B	NA
Arsenic	16	16	5.50	NA	NA	7.70	NA
Barium	820	400	81.3	NA	NA	80.6	NA
Beryllium	47	590	0.430	NA	NA	0.510	NA
Cadmium	7.5	9.3	0.230 B	NA	NA	0.710	NA
Calcium			NA	NA	NA	16,000	NA
Chromium			12.7	NA	NA	12.6	NA
Chromium, Hexavalent			< 0.470	NA	NA	NA	NA
Trivalent Chromium			NA	NA	NA	NA	NA
Cobalt			NA	NA	NA	6.70	NA
Copper	1,720	270	19.7	NA	NA	21.2	NA
Cyanide	40	27	< 0.610	NA.	NA.	NA.	NA.
Iron			NA NA	NA.	NA.	19,600	NA.
Lead	450	1,000	12.7	NA.	NA NA	22.0	NA
Magnesium			NA	NA	NA	4,280	NA
Manganese	2,000	10,000	459 N	NA	NA NA	908	NA
Mercury	0.73	2.8	<0.0800 N	NA.	NA.	0.200	NA
Nickel	130	310	14.1	NA.	NA NA	13.7	NA.
Potassium			NA	NA.	NA	616	NA
Selenium	4	1,500	<1.60	NA NA	NA NA	<1.80	NA NA
Silver	8.3	1,500	<0.410	NA NA	NA NA	<1.80	NA
Sodium	0.0	1,000	NA	NA NA	NA NA	295	NA NA
Thallium			NA NA	NA NA	NA NA	1.10 B	NA NA
Trivalent Chromium			12.7	NA NA	NA NA	NA	NA NA
Vanadium		- :-	12.7 NA	NA NA	NA NA	18.1	NA NA
Zinc	2,480	10,000	48.2	NA	NA	52.9	NA

	6 NYCRR Pa	rt 375 SCOs		lm	ported Bank	Run Gravel (S	Syracuse Sand	d & Gravel, Ll	_C)				ew Stone Park	
Location ID: Date Collected:	Protection of Groundwater (no exceedances)	Restricted- Commercial	SBRC-1 02/20/12	SBRC-2 02/20/12	SBRG-1 02/20/12	SBRG-2 02/20/12	SBRG-3 02/20/12	SBRG-4 02/20/12	SBRG-5 02/20/12	SBRG-6 02/20/12	MSRC-1 07/11/12	MSRG-1 07/11/12	MSRG-2 07/11/12	MSRG-3 07/11/12
PCBs	(no exceedances)	(IIO exceedances)	OL/LU/12	OLIZOTIZ	02/20/12	02/20/12	02/20/12	02/20/12	02/20/12	02/20/12	01/11/12	07/11/12	07/11/12	0//11/12
Aroclor-1016			<0.0370	< 0.0360	NA	NA	NA	NA	NA	NA	<0.0400	NA	NA	NA
Aroclor-1221			<0.0370	<0.0360	NA	NA	NA	NA	NA	NA	<0.0400	NA	NA	NA
Aroclor-1232 Aroclor-1242			<0.0370 <0.0370	<0.0360 <0.0360	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0400 <0.0400	NA NA	NA NA	NA NA
Aroclor-1242 Aroclor-1248			<0.0370	<0.0360	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0400	NA NA	NA NA	NA NA
Aroclor-1254			< 0.0370	< 0.0360	NA NA	NA NA	NA NA	NA	NA NA	NA	<0.0400	NA NA	NA NA	NA NA
Aroclor-1260			< 0.0370	< 0.0360	NA	NA	NA	NA	NA	NA	< 0.0400	NA	NA	NA
Aroclor-1262			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1268 Total PCBs			NA <0.0370	NA <0.0360	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA <0.0400	NA NA	NA NA	NA NA
Volatile Organics			<0.0370	<0.0360	INA	INA	INA	INA	INA	INA	<0.0400	INA	INA	INA
1.1.1.2-Tetrachloroethane			NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	<0.0054	< 0.0047	NA	< 0.0054	<0.0058	< 0.0064
1,1,1-Trichloroethane	0.68	500	NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
1,1,2,2-Tetrachloroethane			NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	< 0.0064
1,1,2-trichloro-1,2,2-trifluoroethane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	0.27	240	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
1,1-Dichloroethane 1,1-Dichloroethene	0.27	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
1,1-Dichloropropene			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
1,2,3-Trichlorobenzene			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
1,2,3-Trichloropropane			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	<0.0054	<0.0058	< 0.0064
1,2,4-Trichlorobenzene			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
1,2,4-Trimethylbenzene	3.6	190	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054 <0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
1,2-Diblomoetriane 1,2-Dichlorobenzene	1.1	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
1,2-Dichloroethane	0.02	30	NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
1,2-Dichloropropane			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
1,3,5-Trimethylbenzene	8.4	190	NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
1,3-Dichloropropage	2.4	280	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
1,3-Dichloropropane 1,4-Dichlorobenzene	1.8	130	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
1,4-Dichiologenzene	0.1	130	NA NA	NA NA	<0.11	<0.20	<0.14	<0.10	<0.11	< 0.094	NA NA	<0.11	<0.12	<0.13
2,2-Dichloropropane			NA	NA	< 0.0054	<0.010	<0.0068	< 0.0052	< 0.0054	< 0.0047	NA	< 0.0054	<0.0058	< 0.0064
2-Butanone	0.12	500	NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
2-Chlorotoluene			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
2-Hexanone 2-Isopropyltoluene			NA NA	NA NA	<0.0054 NA	<0.010 NA	<0.0068 NA	<0.0052 NA	<0.0054 NA	<0.0047 NA	NA NA	<0.0054 NA	<0.0058 NA	<0.0064 NA
4-Chlorotoluene			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
4-Methyl-2-pentanone			NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	< 0.0054	<0.0058	<0.0064
Acetone	0.05	500	NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	< 0.0064
Acrylonitrile			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	0.06	44	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
Bromobenzene Bromochloromethane			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Bromodichloromethane			NA NA	NA.	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	< 0.0054	<0.0058	<0.0064
Bromoform			NA	NA	< 0.0054	< 0.010	<0.0068	< 0.0052	< 0.0054	< 0.0047	NA	< 0.0054	<0.0058	< 0.0064
Bromomethane			NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
Carbon Disulfide			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
Carbon Tetrachloride Chlorobenzene	0.76 1.1	22 500	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
Chloroethane	1.1	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Chloroform	0.37	350	NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
Chloromethane			NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
cis-1,2-Dichloroethene	0.25	500	NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
cis-1,3-Dichloropropene Dibromochloromethane			NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
Dibromocnioromethane Dibromomethane			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Dichlorodifluoromethane			NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	< 0.0047	NA NA	<0.0054	<0.0058	<0.0064
Ethylbenzene	1	390	NA	NA	<0.0054	<0.010	<0.0068	< 0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
Hexachlorobutadiene			NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
lodomethane Isopropylbenzene			NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
Methyl tert-butyl ether	0.93	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Methylene Chloride	0.05	500	NA	NA	<0.0054	<0.010	0.0068 J	0.0063	<0.0054	0.0050	NA	<0.0054	<0.0058	< 0.0064
Naphthalene	12	500	NA	NA	0.0011 BJ	<0.010	<0.0068	< 0.0052	0.0024 BJ	<0.0047	NA	0.0018 J	<0.0058	< 0.0064
n-Butylbenzene	12	500	NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
n-Propylbenzene	3.9	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
o-Xylene p-Isopropyltoluene			NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
sec-Butylbenzene	11	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Styrene			NA	NA	< 0.0054	<0.010	<0.0068	< 0.0052	< 0.0054	< 0.0047	NA	<0.0054	<0.0058	< 0.0064
tert-Butylbenzene	5.9	500	NA	NA	<0.0054	<0.010	<0.0068	< 0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	< 0.0064
Tetrachloroethene	1.3	150	NA	NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA	<0.0054	<0.0058	<0.0064
Tetrahydrofuran Toluene	0.7	500	NA NA	NA NA	NA <0.0054	NA <0.010	NA <0.0068	NA <0.0052	NA <0.0054	NA <0.0047	NA NA	NA <0.0054	NA <0.0058	NA 0.0045 J
trans-1,2-Dichloroethene	0.7	500	NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0045 J <0.0064
trans-1,3-Dichloropropene	0.19		NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
trans-1,4-Dichloro-2-butene			NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA
Trichloroethene	0.47	200	NA	NA	< 0.0054	< 0.010	<0.0068	< 0.0052	< 0.0054	< 0.0047	NA	< 0.0054	<0.0058	< 0.0064
Trichlorofluoromethane			NA	NA	< 0.0054	<0.010	<0.0068	<0.0052	< 0.0054	<0.0047	NA	< 0.0054	<0.0058	<0.0064
Vinyl Acetate Vinyl Chloride	0.02		NA NA	NA NA	<0.0054	<0.010	<0.0068	<0.0052	<0.0054	<0.0047	NA NA	<0.0054	<0.0058	<0.0064
Vinyl Chloride Xylenes (total)	0.02 1.6	13 500	NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068	<0.0052 <0.0052	<0.0054 <0.0054	<0.0047 <0.0047	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	<0.0064 <0.0064
m&p-Xylene			NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
														0.0045 J
Total BTEX Total VOCs			NA NA	NA NA	<0.0054 <0.0054	<0.010 <0.010	<0.0068 0.0068 J	<0.0052 0.0063	<0.0054 <0.0054	<0.0047 0.0050	NA NA	<0.0054 <0.0054	<0.0058 <0.0058	0.0045 J

	O NIVORD D				d Dawlet	D 0			6)				ew Stone Park	
	6 NYCRR Pa	rt 375 SCOs Restricted-			ported Bank								ported Offsite	
Location ID: Date Collected: Semivolatile Organics	Groundwater (no exceedances)	Commercial (no exceedances)	SBRC-1 02/20/12	SBRC-2 02/20/12	SBRG-1 02/20/12	SBRG-2 02/20/12	SBRG-3 02/20/12	SBRG-4 02/20/12	SBRG-5 02/20/12	SBRG-6 02/20/12	MSRC-1 07/11/12	MSRG-1 07/11/12	MSRG-2 07/11/12	MSRG-3 07/11/12
1,2,4,5-Tetrachlorobenzene			NA											
1,2,4-Trichlorobenzene			<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
1,2-Dichlorobenzene	1.1	500	<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
1,3-Dichlorobenzene	2.4	280	<0.36	<0.35	NA NA	NA NA	NA	NA NA	NA NA	NA	<0.40	NA NA	NA NA	NA NA
1,4-Dichlorobenzene 2,2´-oxybis(1-Chloropropane)	1.8	130	<0.36 <0.36	<0.35 <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 <0.40	NA NA	NA NA	NA NA
2,4,5-Trichlorophenol			<0.73	<0.72	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
2,4,6-Trichlorophenol			<0.36	<0.35	NA NA	NA NA	NA	NA NA	NA NA	NA NA	<0.40	NA.	NA.	NA.
2,4-Dichlorophenol			< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	< 0.40	NA	NA	NA
2,4-Dimethylphenol			< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	< 0.40	NA	NA	NA
2,4-Dinitrophenol			<0.73	<0.72	NA	NA	NA	NA	NA	NA	<0.81	NA	NA	NA
2,4-Dinitrotoluene			<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
2,6-Dinitrotoluene			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
2-Chloronaphthalene			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
2-Chlorophenol 2-Methylnaphthalene			<0.36 <0.36	<0.35 <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 <0.40	NA NA	NA NA	NA NA
2-Methylphenol	0.33	500	<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
2-Nitroaniline			<0.73	<0.72	NA NA	NA NA	NA NA	NA NA	NA NA	NA	<0.40	NA NA	NA NA	NA NA
2-Nitrophenol			<0.36	<0.35	NA NA	NA NA	NA	NA NA	NA NA	NA	<0.40	NA NA	NA NA	NA NA
3&4-Methylphenol			NA											
3,3'-Dichlorobenzidine			<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
3-Nitroaniline			<0.73	<0.72	NA	NA	NA	NA	NA	NA	<0.81	NA	NA	NA
4,6-Dinitro-2-methylphenol			<0.73	<0.72	NA	NA	NA	NA	NA	NA	<0.81	NA	NA	NA
4-Bromophenyl-phenylether			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
4-Chloro-3-Methylphenol 4-Chloroaniline			<0.36 <0.36	<0.35 <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 <0.40	NA NA	NA NA	NA NA
4-Chlorophenyl-phenylether			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
4-Methylphenol	0.33	500	<0.36	<0.35	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.14 J	NA.	NA NA	NA.
4-Nitroaniline			<0.73	<0.72	NA NA	NA	NA	NA	NA NA	NA	<0.81	NA NA	NA NA	NA NA
4-Nitrophenol			< 0.73	< 0.72	NA	NA	NA	NA	NA	NA	<0.81	NA	NA	NA
Acenaphthene	98	500	< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	< 0.40	NA	NA	NA
Acenaphthylene	107	500	< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	0.37 J	NA	NA	NA
Acetophenone			NA											
Aniline			NA											
Anthracene	1,000	500	<0.36	<0.35	NA	NA	NA	NA	NA	NA	0.25 J	NA	NA	NA
Azobenzene Benzidine			NA NA											
Benzo(a)anthracene	1	5.6	<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.42	NA NA	NA NA	NA NA
Benzo(a)pyrene	22	1	<0.36	<0.35	NA NA	NA NA	NA	NA.	NA.	NA.	0.43	NA.	NA.	NA.
Benzo(b)fluoranthene	1.7	5.6	<0.36	<0.35	NA	NA	NA	NA	NA	NA	0.53	NA	NA	NA
Benzo(g,h,i)perylene	1,000	500	< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	0.36 J	NA	NA	NA
Benzo(k)fluoranthene	1.7	56	< 0.36	< 0.35	NA	NA	NA	NA	NA	NA	0.21 J	NA	NA	NA
Benzoic Acid			NA											
bis(2-Chloroethoxy)methane			<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
bis(2-Chloroethyl)ether			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
bis(2-Chloroisopropyl)ether			NA <0.36	NA <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 0.090 J	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
Carbazole			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
Chrysene	1	56	<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.51	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene	1,000	0.56	<0.36	<0.35	NA NA	NA	NA	NA	NA NA	NA	0.093 J	NA NA	NA NA	NA NA
Dibenzofuran	210	350	<0.36	< 0.35	NA	NA	NA	NA	NA	NA	< 0.40	NA	NA	NA
Diethylphthalate			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
Dimethylphthalate			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
Di-n-Butylphthalate			<0.36	<0.35	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.11 J	NA NA	NA NA	NA NA
Di-n-Octylphthalate	1.000	 500	<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 0.77	NA NA	NA NA	NA NA
Fluoranthene Fluorene	1,000 386	500 500	<0.36 <0.36	<0.35 <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
Hexachlorobenzene	3.2	6	<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA
Hexachlorobutadiene			<0.36	<0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA	<0.40	NA NA	NA NA	NA NA
Hexachlorocyclopentadiene			<0.36	<0.35	NA NA	NA NA	NA	NA	NA NA	NA	<0.40	NA.	NA NA	NA.
Hexachloroethane			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
Indeno(1,2,3-cd)pyrene	8.2	5.6	<0.36	< 0.35	NA	NA	NA	NA	NA	NA	0.29 J	NA	NA	NA
Isophorone			<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
Naphthalene	12	500	<0.36	< 0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
Nitrobenzene			<0.36	<0.35	NA	NA	NA	NA	NA	NA	<0.40	NA	NA	NA
N-Nitrosodimethylamine			NA -0.20	NA -0.25	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA -0.40	NA NA	NA NA	NA NA
N-Nitroso-di-n-propylamine			<0.36	<0.35 <0.35	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 <0.40	NA NA	NA NA	NA NA
N-Nitrosodiphenylamine Pentachloronitrobenzene			<0.36 NA	<0.35 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.40 NA	NA NA	NA NA	NA NA
Pentachlorophenol	0.8	6.7	<0.73	<0.72	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.81	NA NA	NA NA	NA NA
Phenanthrene	1,000	500	<0.75	<0.72	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.41	NA NA	NA NA	NA NA
Phenol	0.33	500	<0.36	<0.35	NA NA	NA NA	<0.40	NA NA	NA NA	NA NA				
Pyrene	1,000	500	<0.36	<0.35	NA	NA	NA	NA	NA	NA	0.75	NA	NA	NA
Pyridine			NA											
Total PAHs Total SVOCs			<0.36 <0.73	<0.35 <0.72	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.4 J 5.7 J	NA NA	NA NA	NA NA

	6 NYCRR Pa	ert 375 SCOs		lm	ported Bank	Run Gravel (S	yracuse Sand	d & Gravel, LL	_C)			psoil (from Ne		
Location ID: Date Collected: (Protection of Groundwater	Restricted- Commercial (no exceedances)	SBRC-1 02/20/12	SBRC-2 02/20/12	SBRG-1 02/20/12	SBRG-2 02/20/12	SBRG-3 02/20/12	SBRG-4 02/20/12	SBRG-5 02/20/12	SBRG-6 02/20/12	MSRC-1 07/11/12	MSRG-1 07/11/12	MSRG-2 07/11/12	MSRG-3 07/11/12
Pesticides														
4,4'-DDD	14	92	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
4,4'-DDE	17	62	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
4,4'-DDT	136	47	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Aldrin	0.19	0.68	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Alpha-BHC	0.02	3.4	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Alpha-Chlordane	2.9	24	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Beta-BHC	0.09	3	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Delta-BHC	0.25	500	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Dieldrin	0.1	1.4	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Endosulfan I	102	200	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Endosulfan II	102	200	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Endosulfan Sulfate	1,000	200	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Endrin	0.06	89	< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Endrin Aldehyde			< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Endrin Ketone			< 0.0037	< 0.0036	NA	NA	NA	NA	NA	NA	< 0.0040	NA	NA	NA
Gamma-BHC (Lindane)	0.1	9.2	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Gamma-Chlordane			< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Heptachlor	0.38	15	< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Heptachlor Epoxide			< 0.0019	<0.0018	NA	NA	NA	NA	NA	NA	< 0.0021	NA	NA	NA
Methoxychlor			< 0.019	<0.018	NA	NA	NA	NA	NA	NA	< 0.021	NA	NA	NA
Technical Chlordane			NA											
Toxaphene			<0.19	<0.18	NA	NA	NA	NA	NA	NA	<0.21	NA	NA	NA
Herbicides														
2,4,5-T			NA											
2.4.5-TP	3.8	500	NA	< 0.0045	NA	NA	NA							
2,4-D			NA											
2,4-DB			NA											
Dalapon			NA											
Dicamba			NA											
Dichloroprop			NA											
Dinoseb			NA											
Inorganics														
Aluminum			4.500	5.850	NA	NA	NA	NA	NA	NA	7.370	NA	NA	NA
Antimony			<0.830	<1.10	NA	NA	NA	NA	NA	NA	<1.10 N	NA	NA	NA
Arsenic	16	16	2.80	3.70	NA	NA	NA	NA	NA	NA	7.80 *	NA	NA	NA
Barium	820	400	37.2	59.2	NA	NA	NA	NA	NA	NA	105 *	NA	NA	NA
Beryllium	47	590	0.220	0.270 B	NA	NA	NA	NA	NA	NA	0.350	NA	NA	NA
Cadmium	7.5	9.3	<0.210	<0.270	NA	NA	NA	NA	NA	NA	2.40 *	NA	NA	NA
Calcium			4.380	14,300	NA	NA	NA	NA	NA	NA	61.300	NA	NA	NA
Chromium			7.10	6.50	NA	NA	NA	NA	NA	NA	30.1 *	NA	NA	NA
Chromium, Hexavalent			NA	<4.8	NA	NA	NA							
Trivalent Chromium			NA	7.80	NA	NA	NA							
Cobalt			4.00	4.80	NA	NA	NA	NA	NA	NA	42.0 *	NA	NA	NA
Copper	1,720	270	21.9	27.9	NA	NA	NA	NA	NA	NA	1.50	NA	NA	NA
Cyanide	40	27	<1.10	<0.770	NA	NA	NA	NA	NA	NA	16,600	NA	NA	NA
Iron			12,400	14,400	NA	NA	NA	NA	NA	NA	45.7 *	NA	NA	NA
Lead	450	1,000	3.70	3.10	NA	NA	NA	NA	NA	NA	13,800 *	NA	NA	NA
Magnesium			3,300	5,210	NA	NA	NA	NA	NA	NA	730 *	NA	NA	NA
Manganese	2,000	10,000	488	859	NA	NA	NA	NA	NA	NA	0.240 *	NA	NA	NA
Mercury	0.73	2.8	0.00570 B	0.00820 B	NA	NA	NA	NA	NA	NA	18.0 *	NA	NA	NA
Nickel	130	310	9.20	10.3	NA	NA	NA	NA	NA	NA	743	NA	NA	NA
Potassium			399	478	NA	NA	NA	NA	NA	NA	<1.70	NA	NA	NA
Selenium	4	1,500	<1.20	<1.60	NA	NA	NA	NA	NA	NA	0.330 B	NA	NA	NA
Silver	8.3	1,500	<1.20	<1.60	NA	NA	NA	NA	NA	NA	138 E	NA	NA	NA
Sodium			20.9 B	27.7 B	NA	NA	NA	NA	NA	NA	1.10	NA	NA	NA
Thallium			< 0.830	<1.10	NA									
Trivalent Chromium			NA	30	NA	NA	NA							
Vanadium			10.2	12.2	NA	NA	NA	NA	NA	NA	16.7	NA	NA	NA

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

- 1. ISS = in-situ soil solidification.
- 2. PCBs = Polychlorinated Biphenyls.
- 3. VOCs = Target Compound List (TCL) Volatile Organic Compounds and Methyl-t-Butyl Ether (MTBE).
- 4. SVOCs = TCL Semi-Volatile Organic Compounds and Pyridine.
- 5. Inorganics = Target Analyte List (TAL) Metals and Cyanide
- 6. SCOs = soil cleanup objectives.
- 7. Laboratory analysis was performed by TestAmerica Laboratories, Inc. (TestAmerica), of Buffalo, New York.
 - PCBs using USEPA SW-846 Method 8082;
 - VOCs/BTEX using United States Environmental Protection Agency (USEPA) SW-846 Method 8260B;
 - SVOCs using USEPA SW-846 Method 8270C;
 - Pesticides and herbicides using USEPA SW-846 Method 8081.
 - Herbicides using USEPA SW-846 Method 8151.
 - Inorganics using USEPA SW-846 Methods 6010B, 7471A and 9012A;
- 8. Data qualifiers are defined as follows:
 - < Constituent not detected at a concentration above the reported detection limit.
 - B (Inorganic) Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
 - B (Organic) Compound was found in blank.
 - E Estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
 - J Indicates that the associated numerical value is an estimated concentration.
 - N Matrix spike recovery falls outside of the control limit.
 - S This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected.
 - * Relative Percent Difference for duplicate analyses is outside of the control limit.
- 9. NA = Not analyzed.
- 10. Concentrations reported in dry weight parts per million (ppm), which is equivalent to milligrams per kilogram (mg/Kg).
- 11. 6 NYCRR Part 375 SCOs are from Title 6 of the Official Compilation of Codes, Rules, and Regulations of the State of New York (6 NYCRR) Part 375-6.8(b).
- 12. -- = No 6 NYCRR Part 375 SCO listed.
- 13. The data were not validated.

	Measuring	Well	Dep Screene	th to	Sumn	Total Well										NΔF	Pl Thic	kness	(foot)									
	Point Elevation		Тор	Bottom			4	/9	4/	10	4/	11	4/	12	4/			16	4/	17	4/	18	4/	19	4/2	20	4/	23
Location		(inches)	(ft)	(ft)	(ft)	(ft)	AM			PM	AM	PM	AM		AM		AM		AM		AM	PM	AM		AM			PM
MW-7S	374.96	4	5	10	1	11																						
MW-7D	374.34	4	13	23	1	24																						
MW-8S	375.75	2	4	9	0	9								1											-	1	1	
MW-8D	375.84	2	16	26	2	28																						
MW-30S	373.44	4	5	10	0	10																						
MW-30D	373.47	4	12	22	2	24																						
MW-31S	373.73	4	3	10	1	11																						
MW-31D	373.65	4	16	26	1	27																						
MW-34D	374.25	2	10.5	20.5	2	22.5																						
MW-35D	374.64	2	12.5	22.5	2	24.5								1											-	1	1	
MW-36S	375.11	2	3	10	2	12	3.1 (LNAPL)	3.1 (LNAPL)	3.1 (LNAPL)	3.1 (LNAPL)	3.1 ^A (LNAPL)			-												-		
MW-36D	375.06	2	15	25	2	27																						

	Measuring	Well		th to	Sump	Total Well										NAP	L Thic	kness	(feet)									
	Point Elevation		Тор	Bottom	Length		4/	24	4/:	25	4/	26	4/:	27	4/	30		/1		/2	5	/3	5.	/4	5.	<i>l</i> 7	5.	/8
Location		(inches)	(ft)	(ft)	(ft)	(ft)	AM		AM	PM	AM		AM	PM	AM		AM		AM		AM		AM		AM		AM	PM
MW-7S	374.96	4	5	10	1	11																						
MW-7D	374.34	4	13	23	1	24																						
MW-8S	375.75	2	4	9	0	9	1							-											1		1	
MW-8D	375.84	2	16	26	2	28	1							1											1		1	
MW-30S	373.44	4	5	10	0	10	1							1											1		1	
MW-30D	373.47	4	12	22	2	24	-																				1	
MW-31S	373.73	4	3	10	1	11																						
MW-31D	373.65	4	16	26	1	27																						
MW-34D	374.25	2	10.5	20.5	2	22.5																					NA	NA
MW-35D	374.64	2	12.5	22.5	2	24.5																					NA	NA
MW-36S	375.11	2	3	10	2	12																						
MW-36D	375.06	2	15	25	2	27																						

	Measuring	Well	Dep ^o Screened	th to	Sump	Total Well						NA	PL Thic	kness	(feet)					
	Point Elevation		Тор	Bottom		Depth		/9 PM	5/17 PM	5/18	5/24	5/31	6/7	6/14	6/15	6/21	6/29 PM	7/5 PM	7/12 PM	7/25
Location	(ft NAVD 88)	(inches)	(ft)	(ft)	(ft)	(ft)	AM	PIVI	PIM	PM	AM	AM	AM	PM	PM	PM	PIVI	PM	PIVI	PM
MW-7S	374.96	4	5	10	1	11			-					-						
MW-7D	374.34	4	13	23	1	24														
MW-8S	375.75	2	4	9	0	9														
MW-8D	375.84	2	16	26	2	28						0.5 ^D (DNAPL)	0.15 (DNAPL)		0.15 (DNAPL)	0.15 (DNAPL)	0.21 (DNAPL)	0.19 (DNAPL)	0.16 (DNAPL)	0.25 (DNAPL)
MW-30S	373.44	4	5	10	0	10														
MW-30D	373.47	4	12	22	2	24														
MW-31S	373.73	4	3	10	1	11														
MW-31D	373.65	4	16	26	1	27														
MW-34D	374.25	2	10.5	20.5	2	22.5	NA	NA												
MW-35D	374.64	2	12.5	22.5	2	24.5	NA	NA												
MW-36S	375.11	2	3	10	2	12				<0.01 (LNAPL)	<0.01 (LNAPL)	0.14 ^B (LNAPL)	0.08 ^C (LNAPL)		0.09 (LNAPL)	0.04 (LNAPL)	0.02 (LNAPL)			
MW-36D	375.06	2	15	25	2	27												-		

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

- 1. MW = Monitoring Well; S = Shallow Well; D = Deep Well.
- 2. NAPL = non-aqueous phase liquid.
- 3. LNAPL = light non-aqueous phase liquid.
- 4. DNAPL = dense non-aqueous phase liquid.
- 5. All elevations refer to North American Vertical Datum (NAVD) 1988 based on United States Geological Survey (USGS) Mon # S-34.
- 6. Depths are relative to the measuring point elevation (top of inner casing).
- 7. A= Less than 1 gallon of NAPL (fuel oil/diesel) removed from MW-36S on 4/11/2012
- 8. B= Approximately 1 gallon LNAPL/water removed from MW-36S on 5/31/2012
- 9. C= <0.25 gallon LNAPL/water removed from MW-36S on 6/7/2012
- 10. De Approximately 1.5 gallons DNAPL/water removed from MW-8D on 5/31/2012
- 11. --= NAPL not detected.

TABLE 6 ISS MIXING CELL SUMMARY AND QA/QC TEST RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

		Mixing Ce	ell Depths	Treated	ed Soil Grout Mass		Grout	Wa	ter	Sample								
	Mixing	Тор	Bottom	Volume	Mass		PC	BF:	S	Bente	onite	Volume	Mass	Volume	Depth	UC	CS (psi)	Permeability
Date	Cell #	(feet bgs)	(feet bgs)	(CY)	(tons)	(lbs)	(%)	(lbs)	(%)	(lbs)	(%)	(gal)	(kg)	(gal)	(feet bss)	7-Day	28-Day	(cm/sec)
4/9/2012	40	4	24	148	250	7,511	1.50%	25,503	5.11%	2,015	0.40%	5,822	16,085	4,250	10-12	90	155 & 180	3.83 x 10 ⁻⁸
4/10/2012	1	4	22	212	358	10,269	1.44%	35,390	4.95%	2,948	0.41%	8,246	22,352	5,905	10-12	40	165 & 180	1.79 x 10 ⁻⁸
	6	4	22	129	218	6,252	1.44%	22,154	5.09%	1,770	0.41%	5,157	14,281	3,773				
4/11/2012	12 & 13	4	22	241	407	11,413	1.40%	40,172	4.94%	3,181	0.39%	9,294	25,238	6,668		-		
4/12/2012	48 & 49	4	24	375	633	18,475	1.46%	61,927	4.89%	5,459	0.43%	14,531	38,964	10,294				
	45 & 46	4	24	324	547	14,914	1.36%	50,902	4.65%	4,709	0.43%	12,027	32,019	8,459	14	85	195 & 225	1.77 x 10 ⁻⁸
4/13/2012	34 & 35	4	24	374	631	18,311	1.45%	63,215	5.01%	6,290	0.50%	14,744	39,757	10,504				
4/16/2012	4 & 5	4	22	230	388	12,079	1.56%	40,104	5.17%	3,997	0.51%	9,247	25,359	6,700	13	120	285 &300	1.75 x 10 ⁻⁸
., 10,2012	43 & 44	4	24	324	547	15,825	1.45%	53,929	4.93%	5,351	0.49%	12,453	34,092	9,007				
4/17/2012	41 & 42	4	24	284	479	14,519	1.51%	48,823	5.09%	4,901	0.51%	11,315	30,806	8,139	12	100	260 & 270	1.72 x 10 ⁻⁸
4/18/2012	10 & 11	4	22	266	449	13,607	1.52%	45,521	5.07%	4,522	0.50%	10,707	28,738	7,593	14.5	35	235 & 290	1.35 x 10 ⁻⁷
4/10/2012	38 & 39	4	24	296	500	15,265	1.53%	51,133	5.12%	5,071	0.51%	12,025	32,266	8,525				
4/19/2012	28 & 29	4	24	339	572	16,034	1.40%	56,160	4.91%	5,410	0.47%	12,986	34,958	9,236	5	110	295 & 330	3.47 x 10 ⁻⁸
4/19/2012	36 & 37	4	24	296	500	15,179	1.52%	52,648	5.27%	5,249	0.53%	12,558	35,984	9,507				
4/20/2012	32 & 33	4	24	296	500	15,009	1.50%	50,174	5.02%	4,901	0.49%	11,872	31,526	8,329	15	135	230 & 295	9.38 x 10 ⁻⁸
4/23/2012	30 & 31	4	24	296	500	14,394	1.44%	49,985	5.00%	4,914	0.49%	12,022	31,673	8,368				
4/23/2012	2 & 3	4	22	286	483	15,163	1.57%	48,576	5.03%	4,821	0.50%	11,649	30,749	8,124	5	40	220 & 225	5.16 x 10 ⁻⁸
4/24/2012	26 & 27	4	24	326	550	16,845	1.53%	55,712	5.06%	5,397	0.49%	13,239	35,107	9,275	12.5	110	250 & 260	6.83 x 10 ⁻⁸
4/24/2012	7, 8, & 9	4	22	433	731	22,004	1.51%	73,631	5.04%	7,152	0.49%	17,680	46,466	12,276	5	80	285 & 290	1.26 x 10 ⁻⁷
4/25/2012	22 & 23	4	24	422	712	21,424	1.50%	71,142	5.00%	6,911	0.49%	17,008	44,819	11,841				
4/26/2012	24 & 25	4	24	326	550	16,757	1.52%	54,374	4.94%	5,326	0.48%	13,006	34,950	9,234	18	80	205 & 210	1.00 x 10 ⁻⁷
4/27/2012	17 & 18	4	22	291	491	14,489	1.48%	48,724	4.96%	4,658	0.47%	11,565	30,647	8,097	19	80	275 & 280	6.77 x 10 ⁻⁸
4/30/2012	19, 20, & 21	4	24	489	825	24,998	1.51%	82,498	5.00%	7,820	0.47%	20,177	51,521	13,612	19	110	275 & 295	1.60 x 10 ⁻⁸
5/1/2012	47	4	24	162	273	8,525	1.56%	28,450	5.20%	2,694	0.49%	6,647	17,649	4,663				
5/2/2012	14, 15, & 16	4	22	441	744	22,348	1.50%	74,127	4.98%	7,258	0.49%	17,715	47,018	12,422	5	120	280 & 300	9.08 x 10 ⁻⁸
5/4/2012	53, 54, 55, & 56	4	22	478	807	24,147	1.50%	80,726	5.00%	7,921	0.49%	19,245	51,022	13,480	10	90	190 & 200	9.36 x 10 ⁻⁸
5/7/2012	57, 58, 59, & 60	4	22	565	953	27,117	1.42%	95,120	4.99%	9,138	0.48%	22,718	60,484	15,980	5	150	265 & 290	3.48 x 10 ⁻⁸
5/8/2012	50, 51, & 52	4	22	336	567	17,516	1.54%	58,082	5.12%	5,939	0.52%	13,900	36,341	9,601	18	75	185 & 205	5.85 x 10 ⁻⁸
5/18/2012	61 & 62 (partial)	4	22	311	525	15,503	1.48%	51,879	4.94%	5,547	0.53%	12,479	32,867	8,683	10	110	235 & 245	1.65 x 10 ⁻⁷
5/21/2012	62 (partial) & 63	4	22	377	636	17,908	1.41%	63,874	5.02%	6,025	0.47%	14,746	40,279	10,642	17	150	305 & 295	1.95 x 10 ⁻⁷

- 1. Samples were collected by LAND Remediation, Inc. on the dates indicated.
- 2. Samples were submitted to PW Laboratories, Inc. of Syracuse, NY for analysis of unconfined compressive strength (UCS) by American Society for Testing and Materials (ASTM) Method D1633.
- 3. Samples were submitted for analysis of permeability by ASTM Method D5084.
- 3. QA/QC = quality assurance/quality control.
- 4. bgs = below ground surface
- bss = below solidified surface.
- 6. psi = pounds per square inch.
- 7. cm/sec = centimeters per second.
- 8. UCS = unconfined compressive strength.
- 9. ISS = in-situ soil solidification.
- 10. The project specific performance criteria are presented below:
 - UCS greater than or equal to 50 psi.
 - Permeability less than or equal to 1.0 x 10⁻⁶ cm/sec.
- 11. PC = Portland cement.
- 12. BFS = blast furnace slag.
- 13. CY = cubic yards.
- 14. kg = kilograms.
- 15. lbs = pounds.
- 16. gal = gallons. 17. -- = not applicable.

TABLE 7 SUMMARY OF NON-HAZARDOUS WASTE MANIFESTS FOR THE TRANSPORT OF EXCAVATED MATERIALS TO ONTARIO COUNTY LANDFILL, STANLEY, NEW YORK

Date Shipped	Type of Material	Ticket Number	Manifest Document Number	Tonnage
4/13/2012	NH-Soil	460299	0001	40.81
4/13/2012	NH-Soil	460309	0002	43.19
4/13/2012	NH-Soil	460315	0003	40.66
4/13/2012	NH-Soil	460335	0004	46.22
4/16/2012	NH-Soil	460541	0005	26.12
4/16/2012	NH-Soil	460564	0006	32.44
4/17/2012	NH-Soil	460762	0007	38.35
4/17/2012	NH-Soil	460784	0008	38.83
4/17/2012	NH-Soil	460845	0009	37.77
4/17/2012	NH-Soil	460890	0010	43.00
4/19/2012	NH-Soil	461168	0011	39.13
4/19/2012	NH-Soil	461247	0012	40.32
4/20/2012	NH-Soil	461380	0013	35.97
4/20/2012	NH-Soil	461448	0014	39.15
4/24/2012	NH-Soil	461932	0015	35.90
4/24/2012	NH-Soil	461951	0016	38.89
4/24/2012	NH-Soil	461931	0017	39.97
4/25/2012	NH-Soil	461974	0018	41.14
4/25/2012	NH-Soil	461987	0019	39.96
4/25/2012	NH-Soil	462040	0020	39.65
4/25/2012	NH-Soil	462072	0021	39.07
4/25/2012	NH-Soil	462138	0022	36.88
4/25/2012	NH-Soil	462142	0023	36.98
4/25/2012	NH-Soil	462093	0024	40.29
4/25/2012	C&D Debris	462136	0025	31.75
4/26/2012	NH-Soil	462175	0026	37.02
4/26/2012	NH-Soil	462242	0027	37.57
4/26/2012	NH-Soil	462325	0027	32.63
4/26/2012	C&D Debris	462331	0029	30.69
4/27/2012	NH-Soil	462405	0030	34.82
4/27/2012	NH-Soil	462412	0030	34.68
4/30/2012	NH-Soil	462624	0031	33.67
4/30/2012	NH-Soil	462658	0032	31.60
4/30/2012	C&D Debris	462717	0033	25.19
4/30/2012	NH-Soil	462733	0034	31.28
5/1/2012	NH-Soil	462848	0036	33.10
5/1/2012	NH-Soil	462862	0037	29.77
5/1/2012	NH-Soil	462923		37.67
5/1/2012	NH-Soil	462954	0038	33.06
5/1/2012	NH-Soil	462999	0039	39.69
5/2/2012	C&D Debris	463064	0040	31.74
5/2/2012	NH-Soil	463063	0041	27.80
5/2/2012	NH-Soil	463073	0042	33.25
5/2/2012	NH-Soil	463097	0043	33.99
5/8/2012 5/8/2012	NH-Soil NH-Soil	463850 463855	0045	36.04 37.93
0/0/2012			0046 0047	37.93 35.44
5/8/2012	NH-Soil	463934		
5/8/2012	NH-Soil NH-Soil	463937	0048	34.44
5/9/2012		464020	0049	34.39
5/9/2012	NH-Soil	464053	0050	29.33
5/9/2012	NH-Soil	464054	0051	31.34
5/9/2012	NH-Soil	464098	0052	29.29
5/9/2012	NH-Soil	464141	0053	29.56
5/9/2012	NH-Soil	464191	0054	27.97
5/9/2012	NH-Soil	464168	0055	34.50
5/10/2012	NH-Soil	464221	0056	31.07
5/10/2012	NH-Soil	464220	0057	24.75
5/10/2012	NH-Soil	464252	0058	38.23
5/10/2012	NH-Soil	464262	0059	34.96
5/10/2012	NH-Soil	464300	0060	37.35
5/10/2012	NH-Soil	464313	0061	39.00
5/10/2012	NH-Soil	464322	0062	40.12
5/10/2012	NH-Soil	464327	0063	31.16

TABLE 7 SUMMARY OF NON-HAZARDOUS WASTE MANIFESTS FOR THE TRANSPORT OF EXCAVATED MATERIALS TO ONTARIO COUNTY LANDFILL, STANLEY, NEW YORK

Date Shipped	Type of Material	Ticket Number	Manifest Document Number	Tonnage
5/10/2012	NH-Soil	464377	0064	37.30
5/10/2012	NH-Soil	464373	0065	38.93
5/11/2012	NH-Soil	464414	0066	32.73
5/11/2012	NH-Soil	464420	0067	29.64
5/11/2012	NH-Soil	464441	0068	35.25
5/11/2012	NH-Soil	464468	0069	30.81
5/11/2012	NH-Soil	464477	0070	32.53
5/11/2012	NH-Soil	464499	0071	31.45
5/11/2012	NH-Soil	464500	0072	35.11
5/11/2012	NH-Soil	464508	0073	38.59
5/14/2012	NH-Soil	464639	0074	37.98
5/14/2012	C&D Debris	464686	0075	28.23
5/14/2012	NH-Soil	464703	0076	36.60
5/14/2012	NH-Soil	464790	0077	37.80
5/15/2012	NH-Soil	464835	0078	33.45
5/15/2012	NH-Soil	464890	0079	39.90
5/15/2012	C&D Debris	464917	0080	34.61
5/15/2012	NH-Soil	464979	0081	41.06
5/15/2012	NH-Soil	465029	0082	37.76
5/15/2012	NH-Soil	465030	0083	32.54
5/16/2012	NH-Soil	465095	0084	34.03
5/16/2012	NH-Soil	465128	0085	36.32
5/22/2012	NH-Soil	465941	0086	35.12
5/22/2012	NH-Soil	465950	0087	41.44
5/22/2012	NH-Soil	466019	0088	36.41
5/22/2012	NH-Soil	466024	0089	40.91
5/22/2012	NH-Soil	466104	0090	36.67
5/22/2012	NH-Soil	466106	0091	38.55
5/23/2012	NH-Soil	466188	0092	38.04
5/23/2012	NH-Soil	466192	0093	37.52
5/23/2012	NH-Soil	466318	0094	35.08
5/23/2012	NH-Soil	466319	0095	36.46
5/24/2012	NH-Soil	466404	0096	33.79
5/24/2012	NH-Soil	466413	0097	31.35
5/24/2012	NH-Soil	466400	0098	35.34
5/24/2012	NH-Soil	466406	0099	37.52
5/24/2012	NH-Soil	466499	0100	28.81
5/24/2012	NH-Soil	466477	0100	38.93
5/24/2012	NH-Soil	466491	0102	34.32
5/24/2012	NH-Soil	466505	0103	32.48
5/25/2012	NH-Soil	466610	0103	38.97
5/25/2012	NH-Soil	466618	0105	37.18
5/29/2012	NH-Soil	466869	0106	37.44
5/29/2012	NH-Soil	466897	0107	36.13
3/23/2012	NH-Soil with Bulk Friable	400037	0107	30.13
6/8/2012	Asbestos	468670	0108	28.90
0/0/2042	NH-Soil with Bulk Friable	400700	0400	47.74
6/8/2012	Asbestos	468708	0109	17.74
6/13/2012	NH-Soil	469340	0110	32.84
6/13/2012	NH-Soil	469398	0111	30.62
6/13/2012	NH-Soil	469422	0112	36.01
6/13/2012	NH-Soil	469517	0113	32.23
6/13/2012	NH-Soil	469527	0114	37.71
6/14/2012	NH-Soil	469592	0115	20.43
6/25/2012	NH-Soil	471009	0116	30.94
6/27/2012	NH-Soil	471475	0117	29.96
7/19/2012	NH-Soil	474789	0118	42.44
7/19/2012	NH-Soil	474792	0119	37.46
7/19/2012	NH-Soil	474801	0120	35.91
7/19/2012	NH-Soil	474816	0121	34.20
7/19/2012	NH-Soil	474861	0122	34.14
7/19/2012	NH-Soil	474864	0123	32.80
7/19/2012	NH-Soil	474866	0124	31.17
7/19/2012	NH-Soil	474876	0125	34.86
		474949	0126	44.39

TABLE 7

SUMMARY OF NON-HAZARDOUS WASTE MANIFESTS FOR THE TRANSPORT OF EXCAVATED MATERIALS TO ONTARIO COUNTY LANDFILL, STANLEY, NEW YORK

Date Shipped	Type of Material	Ticket Number	Manifest Document Number	Tonnage		
7/19/2012	NH-Soil	474953	0127	30.93		
7/24/2012	NH-Soil	475603	0128	43.26		
7/24/2012	NH-Soil	475613	0129	39.25		
7/24/2012	NH-Soil	475616	0130	40.73		
10/25/2012	NH-Soil	490783	0131	15.64		
	Subtotal Non-Hazardous (NH) Soil:					
	Subtotal NH-Soil with Bulk Friable Asbestos:					
	Subtotal Construction and Demolition (C&D) Debris:					
	_		TOTAL:	4,594.17		

TABLE 8 SUMMARY OF NON-HAZARDOUS WASTE MANIFESTS FOR THE TRANSPORT OF PIPE TO SENECA MEDOWS LANDFILL, WATERLOO, NEW YORK

Date Shipped	Type of Material	Ticket Number	Tonnage
6/13/2012	C&D with Non-Friable Asbestos	2194467	12.34
6/14/2012	C&D with Non-Friable Asbestos	2194572	7.47
6/14/2012	Hazardous Asbestos, Solid	A12-121	4.02
		TOTAL:	23.83

TABLE 9 PIPE COATING ASBESTOS ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Sample ID	Date	Asbestos Present	Type of Asbestos	
M12116-040512-002A	4/5/2012	NAD	NA	
M12116-040512-002B	4/5/2012	NAD	NA	
12116-002A	4/17/2012	NAD	NA	
12116-002B	4/17/2012	NAD	NA	
12116-003A	4/17/2012	Yes	Chrysotile 33.3%	
12116-003B	4/17/2012	NA	NA	
12116-004A	4/17/2012	Yes	Chrysotile <1% Amorite 80%	
12116-004B	4/17/2012	NA	NA	
12116-004C	4/17/2012	INA	NA	
12116-005A	4/17/2012	Yes	Chrysotile 11.3%	
12116-005B	4/17/2012	NA	NA	
12116-005C	4/17/2012	1 1 1 1 1 1	NA	

- 1. Samples were collected by Colden Corporation on the dates indicated.
- Samples were analyzed by AmeriSci New York by: United States Environmental Protection Agency (USEPA) Method 600/M4-82-020, New York State (NYS) Environmental Laboratory Approval Program (ELAP) Method 198.1, 198.4, and/or 198.6.
- 3. NAD = No asbestos detected.
- 4. NA = not analyzed.

TABLE 10 PIPE INTERIOR PCB ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Sample ID	Total PCBs (ug/wipe)
PCB WIPE-1	1.0
PCB WIPE-1A	<1.0
PCB WIPE-1B	<1.0
PCB WIPE-1C	<1.0
PCB WIPE-2	<1.0
PCB WIPE-2C	<1.0
PCB WIPE-2D	<1.0
PCB WIPE-2E	<1.0
PCB WIPE-3	<1.0

- 1. Samples were collected by Colden Corporation on 6/6/2012.
- Samples were analyzed by Spectrum Analytical, Inc. of Syracuse, NY for polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) SW-846 Method 8082.
- 3. Concentrations are shown in micrograms (ug) per wipe.
- 4. The data were not validated.

TABLE 11 PIPE WRAP PCB ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Sample ID	Date	Total PCBs
20-INCH PIPE COATING	4/5/2012	<0.83
PCB BULK-2A	6/6/2012	<0.034
PCB BULK-4A	6/6/2012	<0.036

- 1. Samples were collected by Colden Corporation on the dates indicated.
- Samples were analyzed by Spectrum Analytical, Inc. of Syracuse, NY and Phoenix Environmental Laboratories, Inc. of Manchester, CT for polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) SW-846 Method 8082.
- 3. Concentrations are shown in milligrams per kilogram which is equivalent to parts per million (ppm).
- 4. <= Constituent not detected at a concentration above the reported detection limit.
- 5. The data were not validated.

TABLE 12 TREATED WATER ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

		OCDWEP Allowable				
Compound/		Effluent Concentrations				
Parameter	Units	(No Exceedances)	Effluent-1			
PCBs - USEPA SW-846 Method 8082						
PCB-1016	ug/L		<0.53			
PCB-1221	ug/L		<0.53			
PCB-1232	ug/L		<0.53			
PCB-1242	ug/L		<0.53			
PCB-1248	ug/L		<0.53			
PCB-1254	ug/L		<0.53			
PCB-1260	ug/L		<0.53			
PCB-1262	ug/L		< 0.53			
PCB-1268	ug/L		<0.53			
Total PCBs	ug/L	0.5	< 0.53			
VOCs - USEPA SW-846 Metho	od 8260					
1,1,1,2-Tetrachloroethane	ug/L		<1			
1,1,1-Trichloroethane	ug/L		<1			
1,1,2,2-Tetrachloroethane	ug/L		<0.5			
1,1,2-Trichloroethane	ug/L		<1			
1,1-Dichloroethane	ug/L		<1			
1,1-Dichloroethene	ug/L		<1			
1,1-Dichloropropene	ug/L		<1			
1,2,3-Trichlorobenzene	ug/L		<1			
1,2,3-Trichloropropane	ug/L		<1			
1,2,4-Trichlorobenzene	ug/L		<1			
1,2,4-Trimethylbenzene	ug/L		<1			
1,2-Dibromo-3-chloropropane	ug/L		<1			
1,2-Dibromoethane	ug/L		<1			
1,2-Dichlorobenzene	ug/L		<1			
1,2-Dichloroethane	ug/L		<0.6			
1,2-Dichloropropane	ug/L		<1			
1,3,5-Trimethylbenzene	ug/L		<1			
1,3-Dichlorobenzene	ug/L		<1			
1,3-Dichloropropane	ug/L		<1			
1,4-Dichlorobenzene	ug/L		<1			
2,2-Dichloropropane	ug/L		<1			
2-Chlorotoluene	ug/L		<1			
2-Hexanone	ug/L		<5			
2-Isopropyltoluene	ug/L		<1			
4-Chlorotoluene	ug/L		<1			
4-Methyl-2-pentanone	ug/L		<5			
Acetone	ug/L		<25			
Acrylonitrile	ug/L		<5			
Benzene	ug/L ug/L		1.6			
Bromobenzene						
Bromochloromethane	ug/L		<1 <1			
Bromodichloromethane	ug/L					
	ug/L		<0.5 <1			
Bromoform Bromomethane	ug/L		<1 <1			
טוטווטווופנומוופ	ug/L		< 1			

TABLE 12 TREATED WATER ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

		OCDWEP Allowable			
Compound/		Effluent Concentrations			
Parameter	Units	(No Exceedances)	Effluent-1		
VOCs (con't)					
Carbon Disulfide	ug/L		< 5		
Carbon tetrachloride	ug/L		<1		
Chlorobenzene	ug/L		<1		
Chloroethane	ug/L		<1		
Chloroform	ug/L		<1		
Chloromethane	ug/L		<1		
cis-1,2-Dichloroethene	ug/L		<1		
cis-1,3-Dichloropropene	ug/L		<0.5		
Dibromochloromethane	ug/L		<0.5		
Dibromomethane	ug/L		<1		
Dichlorodifluoromethane	ug/L		<1		
Ethylbenzene	ug/L		<1		
Hexachlorobutadiene	ug/L		<0.4		
Isopropylbenzene	ug/L		<1		
m&p-Xylene	ug/L		<1		
Methyl ethyl ketone	ug/L		<5		
Methyl t-butyl ether (MTBE)	ug/L		<1		
Methylene chloride	ug/L		<1		
Naphthalene	ug/L		3.7		
n-Butylbenzene	ug/L		<1		
n-Propylbenzene	ug/L		<1		
o-Xylene	ug/L		<1		
p-Isopropyltoluene	ug/L		<1		
sec-Butylbenzene	ug/L		<1		
Styrene	ug/L		<1		
tert-Butylbenzene	ug/L		<1		
Tetrachloroethene	ug/L		<1		
Tetrahydrofuran (THF)	ug/L		25		
Toluene	ug/L		<1		
Total Xylenes	ug/L		<1		
trans-1,2-Dichloroethene	ug/L		<1		
trans-1,3-Dichloropropene	ug/L		<0.5		
trans-1,4-dichloro-2-butene	ug/L		<5		
Trichloroethene	ug/L		<1		
Trichlorofluoromethane	ug/L		<1		
Trichlorotrifluoroethane	ug/L		<1		
Vinyl chloride	ug/L		<1		
Total VOCs	ug/L	100	30.3		
Inorganic Constituents - USEPA SW-846 Methods 6010, 7470, & 9012					
Cadmium	ug/L	2,000	<1		
Chromium	ug/L	8,000	<1		
Copper	ug/L	5,000	<5		
Total Cyanide	ug/L		30		
Lead	ug/L	1,000	<2		
Mercury	ug/L	0.8	<0.2		
Nickel	ug/L	5,000	2		
Zinc	ug/L	5,000	24		
2110	ug/L	5,500	27		

TABLE 12 TREATED WATER ANALYTICAL RESULTS

NATIONAL GRID HIAWATHA BOULEVARD FORMER MGP SITE SYRACUSE, NEW YORK

Compound/ Parameter Additional Parameters - USEF	Units	OCDWEP Allowable Effluent Concentrations (No Exceedances)	Effluent-1
Chloride	ug/L		312,000
Oil and Grease by EPA 1664	ug/L	150,000	<1,400
рН	SU	5.5 - 10.5	7.67

Notes:

- 1. Sample was collected by LAND Remediation, Inc. on May 11, 2012.
- 2. Laboratory analysis was performed by Phoenix Environmental Laboratories, Inc. of Manchester, CT.
- 3. PCBs = Polychlorinated biphenyls.
- 4. VOCs = Volatile organic compounds.
- 5. USEPA = United States Department of Environmental Protection.
- 6. OCDWEP = Onondaga County Department of Water Environment Protection.
- 7. Units are defined as follows:
 - ug/L = micrograms per liter, which is equivlant to parts per billion (ppb). SU = standard units (for pH).
- 8. < Constituent not detected at a concentration above the reported detection limit.
- OCDWEP Allowable Effluent Concentrations are from the OCDWEP document titled "Proecedures Governing the Acceptance of Groundwater and Other Contaminated Wastewater" updated on January 4, 2008.
- 10. The data were not validated.

Figures

